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A B S T R A C T   

Kava refers to the extracts from the rhizome of the plant Piper methysticum which is of particular significance to 
various indigenous cultures in the South Pacific region. Kavalactones are the active constituents of kava products 
and are associated with sedative and anxiolytic effects. Kavalactones have been evaluated in vitro for their 
potential to alter the activity of various CYP450 enzymes but have undergone little systematic investigation as to 
their potential influence on esterases. This study investigated the inhibition effects of kava and its kavalactones 
on carboxylesterase 1 (CES1) in an in vitro system and established associated kinetic parameters. Kava and its 
kavalactones were found to produce reversible inhibition of CES1 to varying degrees. Kavain, dihydrokavain, and 
desmethoxyyangonin displayed competitive type inhibition, while methysticin, dihydromethysticin, and yan-
gonin displayed a mixed competitive-noncompetitive type inhibition. The inhibition constants (Ki) values for 
each of the kavalactones were as follows: methysticin (35.2 μM), dihydromethysticin (68.2 μM), kavain (81.6 
μM), dihydrokavain (105.3 μM), yangonin (24.9 μM), and desmethoxyyangonin (25.2 μM). With consideration to 
the in vitro Ki for each evaluated kavalactone as well as available clinical kavalactone concentrations in blood 
circulation, co-administration of CES1 substrate medications and kava products at the recommended daily dose is 
generally free of drug interaction concerns. However, uncertainty around kavalactone exposure in humans has 
been noted and a clinically relevant CES1 inhibition by kavain, dihydrokavain, and dihydromethysticin is indeed 
possible if the kavalactone consumption is higher than 1000 mg in the context of over-the-counter usage. Further 
clinical studies would be required to assess the possibility of clinically significant kava drug-drug interactions 
with CES1 substrate medications.   

1. Introduction 

According to the Center for Disease Control and Prevention (CDC), 
from 2017 to 2018 in the US over 40% of adults aged 20 and older were 
estimated to have used a dietary supplement [1]. Despite the popularity 
of dietary supplement usage in adults, the US Food and Drug Adminis-
tration (FDA) does not require the same scrutiny and rigor of a full 

approval process that are required for conventional medications drugs, 
creating the possibility of unrecognized drug-drug interactions [2]. In 
the US, kava (Piper methysticum) is classified as a dietary supplement and 
is promoted to improve sleep and enhance relaxation. While it is difficult 
to quantify the popularity and prevalence of kava in the United States, 
based on a report from the American Botanical Council, in 2020 kava 
supplements were among the top-selling herbal supplements purchased 
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through natural, healthy food, specialty retail outlets, and kava bars, in 
the US [3]. 

Kava is primarily cultivated in the South Pacific islands where it has 
been in use for thousands of years as a medicine and for ritual purposes 
[4]. The major active constituents responsible for the pharmacological 
activity of kava are referred to as kavalactones, of which there are six 
major ones; kavain, dihydrokavain, methysticin, dihydromethysticin, 
yangonin and desmethoxyyangonin [4]. The proportion of kavalactones 
present in a given kava extract and the dosage of kavalactones received 
from consuming kava can vary based on a variety of factors including 
country of origin, types of cultivars, processing and extraction methods 
and pharmaceutical formulation [4]. Two randomized 
placebo-controlled clinical trials support the utility of kava in treating 
symptoms of anxiety over a period of three weeks or more [5,6]. These 
potential benefits could lead patients to use kava as an alternative 
treatment for anxiety symptoms and to potentially use kava concomi-
tantly with conventional medications. 

The liver is the primary site responsible for drug metabolism due to 
the presence of multiple drug-metabolizing enzymes (DMEs) in high 
abundance. These include the cytochrome P450s, UDP- 
glucuronosyltransferases, esterases and others. Among the hepatic 
DMEs, it has been established that in human liver microsomes and 
human liver S9 fractions, the esterase CES1 is by far the most predom-
inant [7]. CES1 is responsible for the metabolism of a wide array of 
structurally dissimilar drugs (and prodrugs) with representatives from 
essentially every major drug class [8]. 

Pharmacokinetic DDIs are those based on the general principle that 
the plasma concentrations of a “victim” drug are altered by another 
administered “perpetrator” drug or substance leading to inhibition and/ 
or induction of the metabolism (or drug transporter-mediated in-
fluences) of the victim drug. Unrecognized or mismanaged DDIs are a 
significant cause of therapeutic failure, preventable adverse events, and 
hospitalization [9,10]. Although there is a lack of clinical DDI studies 
investigating the influence of CES1 inhibition on CES1 substrate drugs, 
carriers of the G143 CES1 loss of function genetic mutation provide 
strong evidence of altered drug metabolism and disposition as a conse-
quence of compromised CES1 function. Indeed, the metabolism of CES1 
substrate drugs including methylphenidate, clopidogrel and oseltamivir 
are significantly impaired in individuals carrying this CES1 variant 
[11–14]. Accordingly, sufficient exposures to metabolic inhibitors of 
CES1 would be anticipated to produce similar effects. While CES1 in-
hibition by natural products has not been thoroughly evaluated clini-
cally, there are numerous in vitro reports of CES1 inhibition by botanical 
extracts [15]. 

Previously published in vitro studies have assessed the potential for 
kava extracts and/or their individual kavalactones to inhibit various 
DMEs. Available reports suggest that kava and its kavalactones were 
able to inhibit the activity of major cytochrome P450 (P450) enzymes 
[16–18]. However, only recently a kava extract (200 μg/mL) was shown 
to inhibit CES1 activity by around 50%; however, the kinetics of the 
inhibition by kava and its individual constituents on CES1 was not 
evaluated [19]. The aim of the present investigation was to evaluate the 
influence of kava and its constituents more fully on CES1 via in vitro 
assay and to determine if inhibition was significant. 

2. Materials and methods 

Materials. Oseltamivir phosphate (OST) was purchased from 
Sequoia Research Products Ltd. (Pangbourne, UK). Oseltamivir 
carboxylate (OC) was purchased from Toronto Research Chemicals Inc. 
(North York, ON, Canada). Additional OST and ritalinic acid were pur-
chased from Cayman Chemical (Ann Arbor, MI). PBS was purchased 
from Corning (Manassas, VA). Flavokavain A and flavokavain B-free 
(AB-free) kava extract was obtained by a previously described method 
[20]. Kavain, dihydrokavain, methysticin, dihydromethysticin, and 
desmethoxyyangonin were obtained using a previously described 

method, while yangonin was obtained using the same method but 
slightly modified (Fig. 1.) [21]. All other chemicals and reagents were of 
the highest analytical grade and were commercially available. 

Preparation of CES1 Wildtype Cell S9 fractions. Human embry-
onic kidney cells (Flp-In-293; Invitrogen, Carlsbad, CA) expressing wild 
type CES1 were cultured using Dulbecco’s modified Eagle’s Medium 
with 10% FBS, 2 mM L-glutamine, 1% Pen-Strep, and 100 μg/mL 
hygromycin as previously described [11]. The cells were harvested 
when visual inspection determined they achieved around 80%–90% 
confluence and were suspended in PBS. The cells were then sonicated to 
disrupt the membrane and release the enzyme which was then centri-
fuged at 9000 g for 30 min at 4 ◦C. The supernatant containing the CES1 
S9 fractions were then transferred to 1.5 mL Protein Lobind tubes 
(Eppendorf Tubes®) and stored in a − 70 ◦C freezer. The total protein 
concentration was determined by a Pierce BCA protein assay kit. 

CES1 Substrate Metabolism. The influenza neuraminidase inhibi-
tor, oseltamivir (OST), served as the probe CES1 substrate in the con-
ducted experiments. OST is a prodrug requiring CES1-mediated 
hydrolysis to form the active moiety, oseltamivir carboxylate (OC; 
Fig. S1 Supplementary Data). It has been employed in CES1 inhibition 
studies previously by our group and others [22,23]. Samples containing 
OST and S9 fractions with a final reaction volume of 100 μL in 2 mL 
microcentrifuge tubes were incubated at 37 ◦C to form OC. All OST 
concentrations and S9 fractions were prepared in 50 mM phosphate 
buffer. To minimize spontaneous hydrolysis of OST to OC, the 2 mL 
tubes were kept on ice during preparation of pre-mixture solutions, but 
the reaction was initiated by incubating the samples in a 37 ◦C water 
bath system. Our preliminary studies suggested that the reactions were 
linear over an enzyme range of 0–80 μg/mL and incubation time range of 
10–20 min. The final CES1 S9 fraction concentration and incubation 
time were determined as 20 μg/mL and 15 min for subsequent inhibition 
studies. To terminate the reaction, samples were taken out of the incu-
bator, put on ice and 400 μL acetonitrile with 50 nM of ritalinic acid as 
the internal standard was added. Each sample was then centrifuged at 
16,100 g for 10 min at 4 ◦C and 50 μL of supernatant was further diluted 
with 150 μL of 50% water and 50% acetonitrile and 1% formic acid. The 
final solution of 200 μL was then transferred to glass vials with inserts for 
liquid chromatography-tandem mass spectrometry (LC-MS/MS) 
analysis. 

Screening of kavalactones for inhibition of CES1. Kavain, dihy-
drokavain, methysticin, dihydromethysticin, yangonin and desmethox-
yyangonin (all pre-dissolved in DMSO) were all screened initially at a 
concentration of 10 μg/mL to investigate their inhibitory potential of 
CES1. A final OST substrate concentration of 100 μM was utilized for the 
screen. A final volume of 100 μL with 1% DMSO was incubated for 15 
min. The negative controls in these experiments contained 1% DMSO 
but no kavalactones. After the incubation period, all reactions were 
terminated with the addition of ritalinic acid in acetonitrile and un-
derwent LC-MS/MS analysis. 

Assessment of Time-Dependent Inhibition of CES1 by the Indi-
vidual Kavalactones. This assessment was utilized for each individual 
kavalactone to evaluate for the presence of time-dependent inhibition of 
CES1. Each of the 6 kavalactones were preincubated at varying con-
centrations (0–50 μg/mL) for 30-min with CES1 S9 fractions. Individual 
kavalactone pre-dissolved in DMSO (0.5% in final concentration) was 
added to of the pre-incubation mixture containing CES1 S9 while 
another group that served as the no preincubation group was simulta-
neously preincubated with 0.5% DMSO in place of the individual 
kavalactones. After a 30-min pre-incubation, individual kavalactone 
pre-dissolved in DMSO (0.5% final concentration) was added to the no 
preincubation samples while 0.5% DMSO was added to the pre-
incubation samples to achieve the same final DMSO concentration (1%) 
between both groups. 90 μL of the solution for each individual kava-
lactone concentration was mixed with 10 μL of OST for a final volume of 
100 μL with final CES1 S9 fraction concentrations of 20 μg/mL and final 
OST concentrations of 200 μM for each of the kavalactones. This 
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evaluation was performed similarly on the AB-free kava extract con-
taining all 6 kavalactones. AB-free kava extracts have had flavokavain A 
and flavokavain B removed due to their being linked to kava associated 
hepatotoxicity [24]. The samples were then incubated for a period of 15 
min at 37 ◦C. After this incubation period, all samples were prepared for 
LC-MS/MS evaluation as described below. 

In Vitro Inhibition Study by Individual Kavalactones. These ex-
periments permitted the determination of the inhibition constant (Ki) 
and type of inhibition. Substrate concentrations of 0, 200, 400, 800, 
1600, 2500, and 5000 μM were used along with kavalactone concen-
trations of 0–48 μg/mL (0–208.46 μM). The total reaction volume was 
100 μL with 1% DMSO. Each reaction was initiated with the final 
addition of substrate to all samples on ice that were then transferred to a 
water bath for a 15-min incubation period at 37 ◦C. Substrate was added 
to the samples on ice to minimize premature OC formation prior to the 
incubation period. After the incubation period, all samples were pre-
pared for LC-MS/MS evaluation as described below. 

LC-MS/MS Analysis. OST’s active metabolite OC was determined 
using a high-performance liquid chromatography system (Shimadzu, 
Kyoto, Japan) coupled to an AB Sciex API 3000 Triple-Quadrupole Mass 
Spectrometer (Applied Biosystems, Foster City, CA). Chromatographic 
separation was achieved on a C18 reverse-phase analytic column (Aqua, 
50 × 2.0 mm, 5 μm; Phenomenex Inc., Torrance, CA). A gradient mobile 
phase was used with 0.1% formic acid in water as the aqueous phase and 
methanol as the organic phase and was delivered at a flow rate of 0.25 
mL/min as previously described [23]. A gradient method was used 
starting with 90% aqueous phase and 10% organic phase. At 2 min there 
was a switch to 10% aqueous phase and 90% organic phase, and at 6 min 
the ratio returned to 90% aqueous phase and 10% organic phase with a 
total run time of 11 min. The mass spectrometric analysis was performed 
via electrospray ionization in positive mode, and the mass transitions of 
the mass/charge ratios were 285.3 → 138.3 for OC and 220.2 → 84.4 for 
ritalinic acid (Fig. S2 Supplementary Data.). 

Data Analysis. OST was prepared without CES1 S9 fractions at each 
selected concentration of OST for each assay due to its propensity for 
spontaneous hydrolysis to OC as reported previously [23]. This spon-
taneous hydrolysis of OST was accounted for and subtracted from the 
final quantity of OC formation from the samples containing S9 fractions 
of CES1 (Table S1 Supplementary Data). A one-way ANOVA with a 
Dunnett’s multiple comparisons test was used to assess statistical sig-
nificance for the individual kavalactones inhibition screen in compari-
son to the control (α = 0.05). 

To quantify the results from the time-dependent inhibition assays, a 
nonlinear regression analysis with the modified Hill equation (Eq. (1)) 
below was performed [23]: 

Rv = 100 ⋅

(

1 −
Imax ⋅[I]b

[I]b + ICb

)

(1) 

The metabolite formation was expressed as a ratio of remaining 
enzyme activity (Rv) in comparison to each group’s respective controls 
without any individual kavalactone and plotted as CES1 activity, with 
([I]) as the inhibitor concentration already determined, the maximal 
inhibitory percentage (Imax), the half-maximal inhibitory concentration 
(IC) and (b) which is a shaping exponent. For the methysticin pre-
incubation group, 50% inhibition of CES1 was not achieved. This 
resulted in some instability in our model for the methysticin pre-
incubation group not allowing for an accurate prediction of IC50 for the 
methysticin preincubation group; however, this instability was cor-
rected by fixing the preincubation Imax to the Imax generated from the no 
preincubation group which did achieve greater than 50% inhibition. 
Regardless of the inhibition mechanism, the inhibitor and substrate’s 
interactions should be the same between identical assay systems con-
taining the same enzyme. Furthermore, the preincubation group did not 
see a higher Imax, which is further indicative of a lack of time-dependent 
inhibition. This allowed us to compare the IC50 predictions for both 
methysticin groups. These generated parameters were then used to 
calculate the inhibitor concentration that inhibits 50% of enzyme ac-
tivity (IC50) in the equation below (Eq (2)): 

IC50 =
IC

(2⋅Imax − 1)1/b. (2) 

A nonlinear regression analysis was performed using a modified 
Michaelis-Menten model for mixed competitive-noncompetitive inhibi-
tion model for the evaluation of the in vitro potential of the kavalactones 
which is shown in the equation below (Eq. (3)): 

V =
Vmax ⋅[S]

Km

(

1 +
[I]
Ki

)

+ [S]
(

1 +
[I]

α⋅Ki

) (3) 

The predetermined variables by the assay were the substrate con-
centration of OST ([S]) and the concentration of kavalactone ([I]) which 
were both expressed in μM. (V) is the OC formation velocity, which was 
used as the marker for CES1 activity, was determined through LCMS 
analysis of the samples and was expressed as nmol/min/mg protein. The 
remaining parameters were estimated using equation (3) that were the 
reaction’s Michaelis-Menten constant (Km), the maximum velocity of the 
reaction (Vmax), the inhibitor constant (Ki) and the type of inhibition 
indicator (α), where α values equal to 1 are indicative of a noncompet-
itive inhibition type, α values approaching infinity are indicative of a 

Fig. 1. Kavalactone chemical structures. Kavalactones and their respective molecular weights selected for analysis.  
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competitive inhibition type, and values ranging between 1 and infinity 
are indicative of a mixed-type inhibition. The definitions and in-
terpretations of our enzyme kinetics have largely been adapted from 
Segel [25]. Lineweaver-Burke plots were inspected and zoomed in to 
visualize the type of inhibition for each of the kavalactones. 
Lineweaver-Burke plots were only used as a qualitative visual aid to 
demonstrate the type of inhibition and were not used diagnostically. A 
relative weighted linear regression (1/Y2) was used for the 
Lineweaver-Burke plots. The highest kavalactone concentrations for 
methysticin, dihydromethysticin, dihydrokavain, and yangonin and the 
lower substrate concentrations of OST for dihydromethysticin and 
dihydrokavain were excluded because too few amounts of metabolite 
OC formed. 

Software. Excel version 16.51 for Mac (Microsoft, Redmond, WA) 
was used to quantify and store gathered data. Nonlinear regression data 
analysis and graph visualization were performed using GraphPad Prism 
version 9.2.0 for macOS (GraphPad Software, La Jolla, CA). 

3. Results 

Screening of Kavalactones. The metabolite formation of OC in the 
presence of each kavalactone were quantified relative to a control 
containing no kavalactone and were expressed as a ratio. In the first 
screen (Fig. S3 Supplementary Data.) at a concentration of 10 μg/mL for 
each kavalactones, all six kavalactones produced a reduction in 
metabolite formation. Yangonin inhibited CES1 activity by 45.9%, being 
the most of all six kavalactones, while dihydrokavain inhibited CES1 
activity by 22.3%, being the least, but each kavalactone showed statis-
tical significance in comparison to control (p < 0.05). After this screen, it 
was determined that further analysis was warranted for categorizing and 
quantifying the in vitro inhibition exhibited by the AB-free kava extract 
and its kavalactones. 

Kavalactones Demonstrate Reversible Inhibition of CES1 and 
OST hydrolysis. There was a more marked decrease of OC formation at 
higher concentrations of each of the individual kavalactones (Fig. 2. A, 

B, C, D, E, F). Using both a preincubation group and a non-preincubation 
group allowed for a comparison of IC50 values and thereby determina-
tion of inhibition mechanism. All IC50 ratios for each kavalactone of 
preincubation to no preincubation were greater than 1, indicating that 
with a 30-min preincubation phase there was no increase in the potency 
of inhibition (Table 1). Since the preincubation group for each of the 
kavalactones did not show an increase in inhibition potency, it was 
concluded that neither irreversible inhibition nor time-dependent inhi-
bition occurred. The AB-free kava extract containing each kavalactones 
displayed a similar behavior as the individual kavalactones (Fig. S4 
Supplementary Data). 

In-Vitro Categorization and Quantification of Inhibition Poten-
tial of the Six Kavalactones. Using nonlinear regression analysis, the 
extent and type of inhibition the kavalactones exhibit with CES1 was 
determined (Fig. 3. A, B, C, D, E, F). The analytical findings were then 
further visualized with the usage of Lineweaver Burke plots (Fig. 4. A, B, 
C, D, E, F). The Ki values for methysticin, dihydromethysticin, kavain, 
dihydrokavain, yangonin and desmethoxyyangonin were 35.2, 68.2, 
81.6, 105.3, 24.9, and 25.2 μM respectively (Table 2). The order of the 
inhibition potency in vitro for each kavalactone is as follows: yangonin 

Fig. 2. Time-dependent inhibition curve for each kavalactone: (A) methysticin, (B) dihydromethysticin, (C) kavain, (D) dihydrokavain, (E) yangonin, (F) desme-
thoxyyangonin. Each kavalactone was added with the CES1 S9 fractions before a 30-min preincubation in the preincubation group and after in the no preincubation 
group. The OST (substrate) concentration was 200 μM and the CES1 S9 fraction (enzyme) concentration was 20 μg/mL. CES1 activity was a ratio that was relative to 
control with no inhibitor. Individual points represent the mean (±S.D.) done in triplicate. Plots were generated using [Eq. (1)]. 

Table 1 
Preincubation effect with each kavalactone on CES1 activity.  

Kavalactones No 
preincubation 

30 min 
preincubation 

Preincubation/No 
Preincubation 

IC50 (μM) IC50 (μM) 

Methysticin 23.58 ± 12.81 67.53 ± 15.07 2.86 
Dihydromethysticin 56.86 ± 14.00 63.87 ± 18.64 1.12 
Kavain 117.2 ± 70.55 137.4 ± 95.61 1.17 
Dihydrokavain 90.26 ± 42.64 105.22 ± 22.22 1.17 
Yangonin 68.79 ± 35.97 85.36 ± 10.49 1.24 
Desmethoxyyangonin 48.24 ± 16.41 63.16 ± 28.03 1.31 

The IC50 estimates (±S.E.) were obtained from nonlinear regression analysis 
using the model for IC determination from [Eq. (1)] and [Eq. (2)]. 
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Fig. 3. The kinetic analysis for each kavalactone (A) methysticin, (B) dihydromethysticin, (C) kavain, (D) dihydrokavain, (E) yangonin, (F) desmethoxyyangonin in 
an in vitro system with CES1. CES1 S9 fractions were incubated with the absence and presence of each kavalactone. Individual points represent the mean (±S.D.) of 
duplicate samples. Each kavalactone was replicated in triplicate with 1 of the 3 curves being represented. CES1 activity represents the velocity of the reaction (nmol/ 
min/mg protein). Plots were generated by utilizing [Eq. (3)]. 

Fig. 4. The corresponding Lineweaver-Burk plots for each kavalactone (A) methysticin, (B) dihydromethysticin, (C) kavain, (D) dihydrokavain, (E) yangonin, (F) 
desmethoxyyangonin in an in vitro system with CES1. CES1 S9 fractions were incubated with the absence and presence of each kavalactone. Individual points 
represent the mean (±S.D.) of duplicate samples. Each kavalactone was replicated in triplicate with 1 of the 3 curves being represented. Plots were generated using 
linear regression. 
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> desmethoxyyangonin > methysticin > dihydromethysticin > kavain 
> dihydrokavain. Methysticin, dihydromethysticin, and yangonin 
demonstrated a mixed competitive-noncompetitive inhibition. Kavain, 
dihydrokavain, and desmethoxyyangonin demonstrated competitive 
inhibition. 

4. Discussion 

We determined that the AB-free kava extract and its kavalactones 
have the ability, to varying degrees, to inhibit OST hydrolysis by CES1 in 
vitro. After initially screening each kavalactone at a concentration of 10 
μg/mL, OST hydrolysis was inhibited by ≥ 20% when compared to a 
negative control. Each kavalactone exhibited a reversible mechanism of 
inhibition, as a 30-min preincubation period with the kavalactones and 
CES1 S9 fractions did not result in an increase in potency of inhibition. 
Finally, using the mixed type of inhibition Michaelis-Menten model, we 
found that the rank order of CES1 inhibition for the kavalactones were as 
follows: yangonin, desmethoxyyangonin, methysticin, dihy-
dromethysticin, kavain and dihydrokavain. This model also enabled us 
to use generated α parameters to determine the type of inhibition of each 
of the kavalactones. We found that methysticin, dihydromethysticin and 
yangonin demonstrate a mixed competitive-noncompetitive inhibition 
model while kavain, and dihydrokavain, desmethoxyyangonin demon-
strate a competitive model. 

These results add to what has been previously reported relative to 
inhibition of DMEs by kava and its kavalactones. A number of in vitro 
studies has demonstrated that various extracts of kava and the six major 
kavalactones have the ability to inhibit CYP1A2, 2C9, 2C19, 2D6, and 
3A4 [16–18]. However, these findings have generally not been 
confirmed in formal human clinical studies [26–29]. Despite the 
extensive in vitro data and available clinical data on kava and kava-
lactones and the CYP 450 system, only recently has kava itself been 
shown to inhibit a CES1 mediated metabolism of 4-nitrophenyl acetate 
in an in vitro system by 50% at a concentration of 200 μg/mL [19]. CES1 
can catalyze the activation of prodrugs such as oseltamivir or deactivate 
therapeutic compounds like methylphenidate. CES1 substrates encom-
pass a wide variety of therapeutic areas including antihypertensives, 
anti-hyperlipidemic agents, antiplatelet agents, anticoagulants, antiviral 
agents, various CNS agents, and others [30]. 

One of the first major clinical trials involving kava for the treatment 
of generalized anxiety disorder established the safety of using kava doses 
standardized up to a total of 240 mg of kavalactones that was achieved 
by taking two 3 g kava tablets (containing 60 mg of kavalactones) twice 
a day [6]. These investigators determined that of their standardized 60 
mg per tablet of kavalactones contained kavain (21%), dihydrokavain 
(26%), methysticin (14%), dihydromethysticin (18%), yangonin (13%), 
and desmethoxyyangonin (8%) meaning that the patients received up to 

50.4, 62.4, 33.6, 43.2, 31.2, 19.2 mg each of the respective kavalactones 
a day [6]. A commercially available ethanolic extract containing a total 
of 150 mg/mL kavalactones and 75 mg total kavalactone capsule were 
previously profiled for their kavalactone content [31]. It was deter-
mined that the components for the ethanolic extract were kavain 
(27.2%), dihydrokavain (39.1%), methysticin (3.4%), dihy-
dromethysticin (14.1%), and desmethoxyyangonin (16.2%) and the 
components for the capsule were kavain (33.7%), dihydrokavain 
(18.2%), methysticin (10.4%), dihydromethysticin (27.3%), and des-
methoxyyangonin (10.4%) [31]. This highlights both the variability of 
each individual kavalactone based on the supplier and the formulation 
of product. Recently, the kavalactone content of 28 differing commer-
cially available kava products was quantified demonstrating a difference 
in kavalactone content and composition [32]. Depending on the 
cultivar, manufacturer, and supplier patients could be exposed to a wide 
range of dosing for the individual kavalactones when consuming kava 
products. 

There is a paucity of reported pharmacokinetic characterization of 
kavalactones in humans. One of the first studies to quantify the amount 
of individual kavalactones present in human plasma includes two sub-
jects who received one kava soft gel capsule (containing 75 mg of 
kavalactones) three times daily for a total daily dose of 225 mg kava-
lactones for one week before blood samples were drawn [31]. The 
quantified plasma concentrations of kavain (0.01–0.02 μg/mL), dihy-
drokavain (0.03–0.05 μg/mL), methysticin (0.007–0.012 μg/mL), 
dihydromethysticin (0.05–0.08 μg/mL), and desmethoxyyangonin 
(0.0003–0.0008 μg/mL) are generally in the low ng/mL range with the 
consideration that these are not the reported Cmax and are most likely 
not the highest achieved plasma concentrations of the individual kava-
lactones within the two subjects [31]. Another important consideration 
is that as these individual kavalactones are being considered for their 
individual benefits, there may be formulations that are designed to have 
more of a certain kavalactone or only contain one kavalactone, such as 
the study that gave a single dose of 800 mg of kavain in an unreported 
number of human subjects in order to determine its pharmacokinetics 
[33]. They found that subjects attained serum concentrations ranging 
from 0.01 to 0.04 μg/mL within 1–4 h of administration, again these 
were not reported as a Cmax and may not be the highest attainable 
concentration of kavain within a human subject [33]. 

Potential of clinical drug-drug interactions caused by kavalactone- 
mediated CES1 inhibition is evaluated utilizing a basic reversible inhi-
bition model recommended in the FDA guidance for in vitro drug in-
teractions. The model is as follows (Eq. (4)): 

R1 = 1 +

(
Imax,u

Ki,u

)

(4) 

Imax,u represents the maximal unbound plasma concentrations of the 
inhibitor at steady state, Ki,u represents the experimentally determined 
unbound inhibition constant that was determined in the experiments, 
and R1 is the ratio of intrinsic clearance values of a CES1 substrate in the 
absence and presence of inhibitor. An R1 value of 1.02 or greater is 
considered to have the potential of observing clinical interactions and 
needs further investigation by either a more mechanistic model or 
clinical study. In this study, the reported concentrations of kavalactones 
were evaluated for their likelihood to mediate drug interactions with 
CES1 substrates. Since there is no known or reported plasma protein 
binding associated with the individual kavalactones, a similar unbound 
fraction was assumed between in vivo and our in vitro assay. 

Although limited in scope, the available physiological concentrations 
of several kavalactones (namely kavain, dihydrokavain, methysticin, 
dihydromethysticin, and desmethoxyyangonin) were utilized in our 
assessment of DDI potential. Using the limited clinical data, the highest 
R1 value of 1.004 was calculated among all the kavalactones after 
multiple doses of a 75 mg thrice daily total kavalactones regimen [31, 
33]. This dosing regimen provides similar daily intake of total 

Table 2 
Parameter estimates of in vitro kavalactone inhibition studies on CES1 activity.  

Kavalactones Km (μM) Ki (μM) α Vmax (nmol/min/ 
mg protein) 

Methysticin 4014 ±
841 

35.19 ±
10.74 

1.8 ±
0.7 

261 ± 29.6 

Dihydromethysticin 4581 ±
1194 

68.19 ±
7.38 

1.9 ±
0.6 

249 ± 18 

Kavain 2751 ±
452 

81.59 ±
11.22 

∞ 203 ± 25 

Dihydrokavain 6831 ±
912 

105.29 ±
16.97 

∞ 332 ± 71 

Yangonin 3509 ±
1667 

24.86 ±
5.41 

3.1 ±
1.2 

244 ± 67 

Desmethoxyyangonin 2413 ±
441 

25.22 ±
12.60 

∞ 214 ± 46 

All parameter estimates were obtained from nonlinear regression analysis using 
the modified Michaelis-Menten equation in [Eq. (3)]. The values are the mean 
estimated parameters and S.D. in triplicated runs of duplicate samples. 
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kavalactones to the recommended 120 mg twice daily dose [5,6]. Since 
the R1 value extrapolated from available human physiological concen-
trations of kavalactones does not meet the significance cut off defined by 
the FDA, clinically relevant inhibition of CES1 is not expected with 
multiple doses of 120 mg twice daily kavalactones. However, it needs to 
be noted that the reported physiological concentrations of the kava-
lactones were based on a limited sample size in the referenced studies 
and a Cmax was not clearly documented. 

Notably, kava extracts are unregulated and widely available as over- 
the-counter supplements and beverages in kava bars [6]. It is a 
reasonable assumption that many consumers of kava routinely use these 
products daily in amounts far exceeding the recommended ceiling dose 
of 240 mg/day (120 mg twice daily). In the scenario of consumption of 
1000 mg or higher daily kavalactones, this would be anticipated to 
become sufficient to produce measurable inhibition of CES1 and 
potentially influence the metabolism of co-administered CES1 substrate 
medications. Recently, a clinical study involving human patients sought 
to assess the impact of consuming more than 2000 mg of kavalactones in 
a 6 h drinking period, which is considered an average time for a Fijian or 
Polynesian kava session [34]. At a kavalactone concentration of 145 
mg/100 mL, the average kava consumption of the participants was 
3059 mL (7/20 subjects in the kava drinker group were able to drink a 
total 3600 mL) during the 6-h period, resulting in over 4000 mg kava-
lactones being consumed in less than a day [34]. Based on the previous 
predictions, it is certainly plausible in this type of setting to expect drug 
interactions in patients who are also taking medications that are CES1 
substrates. In addition, as indicated by the mouse pharmacokinetic 
study, there appeared to be an accumulation of kavalactones in the liver 
as compared to serum [31]. The liver/serum concentration ratios ranged 
from 5 to 49-fold for the studied kavalactones. Since the liver is the 
major site of metabolism as well as expression of CES1, the hepatic 
concentration may provide a more accurate prediction and a higher 
magnitude of drug interactions may be possible in this case. 

Finally, the typical limitations of extrapolating in vitro assessments 
of DDI potential with botanical constituents to the clinical situation 
applies here. That is, there is little available data on the absorption or 
bioavailability of kavalactones in humans, uncertainty regarding clini-
cally relevant concentrations of free compound versus conjugates or 
other metabolites formed in vivo, and in general, metabolites of 
botanical extracts are poorly characterized yet may potentially 
contribute to the net inhibitory effects observed [35]. 

In conclusion, we have shown that kava and its kavalactones can 
potently inhibit CES1 catalytic activity in vitro. Using these findings 
together with limited available clinical data we predict that clinically 
relevant drug interactions involving inhibition of CES1 by kavalactones 
at the daily recommended dose of kava are unlikely. Meanwhile, several 
uncertain factors have been discussed and a drug interaction potential 
cannot be fully excluded, particularly in the scenario of over-the-counter 
use of more than recommended dose. To rule out clinically relevant drug 
interactions and ensure the safe usage of kava-related products, further 
clinical DDI studies with a standardized kava extract is warranted. 
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