Accepted Manuscript

Liver toxicity related to herbs and dietary supplements: Online table of case reports. Part 3 of 6

Amy Christine Brown

PII: S0278-6915(16)30221-6

DOI: 10.1016/j.fct.2016.07.001

Reference: FCT 8636

To appear in: Food and Chemical Toxicology

Received Date: 8 February 2016

Revised Date: 30 June 2016

Accepted Date: 1 July 2016

Please cite this article as: Brown, A.C., Liver toxicity related to herbs and dietary supplements: Online table of case reports. Part 3 of 6, *Food and Chemical Toxicology* (2016), doi: 10.1016/j.fct.2016.07.001.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Liver Toxicity Related to Herbs and Dietary Supplements: Online Table of Case Reports. Part 3 of 6.

June 28, 2016

Manuscript = 9,475 words (not counting references + tables)
Abstract = 618 words
References = 8,390 words
5 Tables and 1 Figure

Author (no other authors):
Amy Christine Brown, PhD, RDN
Department of Complementary and Alternative Medicine
John A. Burns School of Medicine
651 Ilalo Street, MEB 223
University of Hawaii at Manoa
Honolulu, Hawaii, 96816

808-692-0907 amybrown@hawaii.edu

Abstract: Background: No current list of potentially life-threatening, hepatotoxic herbs and dietary supplements based on PubMed case studies exists in a summarized tabular form. Methods: Documented case reports of herbs or dietary supplements appearing to contribute to liver injury were used to create a "Harmful Herb and Dietary Supplement List" of potentially hepatotoxic herbs and dietary supplements (PubMed 1966 to May, 2015, and cross-referencing). The spectrum of herbal induced liver injuries (HDSILI) researched included elevated liver enzymes, hepatitis, steatosis, cholestasis, hepatic necrosis, hepatic fibrosis, hepatic cirrhosis, veno-occlusive disease, acute liver failure requiring a liver transplant, and death. Results: Over the past 50 years, approximately 19 herbs (minus germander and usnic acid that are no longer sold) and 13 dietary supplements (minus the six no longer sold and vitamin A & niacin due to excess) posed a possible risk for liver injures in certain individuals. The top three herbs with the most number of reported publications (but not cases studies) in descending order, were germander, black cohosh, kava extract, and green tea extract. Conclusion: These online tables will contribute to continued Phase IV post marketing surveillance to detect possible liver toxicity cases and serve to forewarn consumers, clinicians, and corporations.

Introduction

This is the third of six review articles investigating dietary supplements (DS; includes herbs): Article one covers DS definitions, usage, efficacy and safety; article two is an overview of DS regulation in the United States; and articles three through six cover case reports in tabular form related to liver toxicity, kidney toxicity, cardiotoxicity, and cancer published in the medical literature. Interest in complementary and alternative medicine (CAM), also known as functional, integrative, traditional, or holistic medicine, continues to grow, but "natural" is not always safe. Although the majority of botanical products appear inherently safe (Marcus, 2002), and some have demonstrated efficacy, this review focuses on the potentially life-threatening dietary supplements that increase cancer risk as detected through PubMed case reports. Case reports do not always demonstrate causation or association, but reoccurrences raise concerns (Haaz, 2006). In this review, the characteristics and prevalence of liver injuries are defined, the literature search methods employed are described, and a summary table of the results along with a brief discussion of selected DS are presented.

Defining Hepatotoxicity

DILI versus DSLI

The equivalent of drug-induced liver injury (DILI), which is caused by drugs, is herb- and dietary supplement-induced liver injury (DSILI; previously described as HILI, which only covers herbs and thus excludes many products in the broader dietary supplements category). The vast majority of pharmaceuticals have beneficial effects, but adverse event reports (AERs) or serious adverse events (SAEs) related to either drugs or DS do occur, though they are rare events. Because the liver is responsible for eliminating toxins from the body, it is at risk for drug- or DS-related liver injuries caused directly by

these substances or indirectly through their metabolites (Au, 2011). Subsequent injury can occur through cell stress, mitochondrial inhibition, and/or immune reactions. Table 1 lists the possible liver injuries associated with either drugs or DS in ascending order of severity (Stedman, 2002).

Hepatoxicity Symptoms

Consumers need to be aware of liver injury symptoms because when symptoms are recognized, the harmful substance can be immediately removed/discontinued to improve chances of recovery. Unfortunately, the typical symptoms—including fatigue, nausea, vomiting, loss of appetite, itching, abdominal pain or swelling, and dark urine color—are vague and mimic many other conditions. A physician should be immediately consulted if these symptoms appear, and especially if jaundice (yellowing of eye whites and inner palms) appears later on as the condition progresses (note, however, that jaundice does not always develop) (Zheng 2014).

Unpredictable versus Predictable Hepatotoxicity

Hepatotoxicity, like all toxicities, is either unpredictable (idiosyncratic, meaning peculiar to the individual) or predictable (classical or intrinsic) (Brent, 1999; Gunawan, 2004). Most reactions to drugs or DS are idiosyncratic because they cause toxicity in only a small percentage of the population, may not be dose dependent, may not be reproducible in animal models, and may result from an immune-mediated reaction (indicated by fever, rash, and eosinophilia) (Brent, 1999; Gunawan, 2004).

Time to Onset

Idiosyncratic reactions may occur within days or within up to one year, but usually by 6 months (Chalisani, 2014). Latency can be very short for certain drugs, averaging 2.5 days for the quinolones from ciprofloxacin, moxifloxacin, levofloxacin, and gatifloxacin. Serious outcomes from these short latencies can include liver transplant and/or death (Leise, 2014).

Classic liver injuries are predictable, are dose dependent, are reproducible in animal models, and may occur within hours to a few days post-exposure (Kaplowitz, 2004).

Risk Factors for Liver Injury

As discussed below, factors that increase the risk for DILIs or DSILIs include greater age, female gender, higher dose, malnutrition, alcoholism, genetics, race, concomitant drugs, and underlying disease (Andrade, 2008; Chalisani, 2010). To predict DILI risk for specific drugs in development, the DILIsym® software program (www.dilisym.com) and the Mechanism Based Integrated System of using *in vitro* assays (www.pip-dili.eu) can be used.

Age

Liver injury risk increases as people age (Andrade, 2008).

Gender

Females have a higher risk of developing DILIs, but this might be due to the types of drugs they more frequently consume, such as antidepressants. Autoimmune hepatitis triggered by drugs is almost exclusively diagnosed in women (Andrade, 2008).

Dose

A high daily dose (over 50-100 mg/day) of a medication may result in a higher DILI risk (Chen, 2013; Yu, 2014). Drugs withdrawn from the market in the United States are often administered in doses exceeding 50 mg (Chalisani, 2014). It is not surprising that some of the DS-related liver toxicities are also associated with excessive doses. For example, seeds of *Psoralea corylifolia* are routinely used in China for osteoporosis, but 10 times the usual dose resulted in a case of acute hepatitis (Nam, 2005).

Malnutrition

Protein-calorie malnutrition, restricted feeding, fasting, and starvation can increase the toxicity of some drugs. Fasting is actually recommended before scheduling certain chemotherapy drugs (Campbell, 1974).

Alcoholism

A liver compromised by alcohol abuse is more prone to DILI (Andrade, 2008).

Genetics

Patients respond differently to medications, and considerable evidence suggests that idiosyncratic DILI susceptibility is genetically determined (Urban, 2014). The International Serious Adverse Event Consortium (iSAEC), a nonprofit research organization, was founded in 2007 to identify DNA differences related to drug-related serious adverse events (www.saeconsortium.org).

Cytochrome P450 (CYP3A4) is the most abundant CYP enzyme in the liver, metabolizing approximately 50% of current drugs (Zhou, 2007). CYP gene defects are

responsible for some types of drug-induced hepatitis (Kawaguchi, 2004), and Zhou (2007) lists a number of drugs and chemicals from DS that are CYP3A4 inhibitors.

Clinical consequences range from lack of therapeutic efficacy to severe toxicity, and in extreme cases, death (Zhou, 2007).

The mechanism may involve genetic influences on the P450 liver enzymes that metabolize drugs. Having particular alleles that either inhibit or promote certain liver enzymes, especially in the presence of competing drugs or DS, may predispose an individual to liver injury (Stedman, 2002). For example, a genetic basis for flucloxacillin DILI is well established, with an 80-fold increase in risk if the (HLA)-B*5701 allele is present.

In terms of DS, some individuals may have a genetic predisposition to kava toxicity, as Russmann found that two patients were poor-metabolizer phenotypes of cytochrome P4502D6 (Russmann, 2001). Kavalactones inhibit CYP enzymes (CYP1A2, CYP2D6) or cyclooxygenases (COX-1, COX-2), or deplete hepatic glutathione. Eight percent of Europid people have a CYP2D6 deficiency that may place them at a greater risk for kava toxicity than Pacific Islanders, of whom only 1% are CYP2D6 deficient (Chitturi, 2008).

Another DS example is green tea extract. Epigallocatechin gallate (EGCG), the suspected problematic agent in concentrated green tea extract, was found to be tolerated by most genetically heterogeneous mice (84%), but a small fraction (16%) experienced severe hepatotoxicity (10-87% liver necrosis), a situation similar to clinical cases in humans (Church, 2015). It has been suggested that this animal model can be used to detect rare liver injuries that may occur in consumer populations ingesting

concentrated herbal products. The species used to test for liver toxicity may be important, as rats are reportedly not very sensitive to hepatotoxicity, whereas both mice and hamsters are very sensitive (Davis, 1974).

Race

Asian race has been reported as an independent risk factor for DILI, especially for reducing the time period to liver transplant or death (Fontana, 2014). Aldehyde dehydrogenase enzyme levels in Asians are known to affect their ability to metabolize alcohol (Thomasson, 1993). Lee et al. (2013) found that related allele frequencies among Koreans were similar to those of Japanese and Chinese of Han descent, but differed from European-Americans and African-Americans. Up to 14% of Japanese carry the CYP2C19 poor-metabolizer phenotype

It has been suggested that the low incidence of liver injuries related to a particular weight-loss supplement (containing N-nitrosfenfluramine) may have contributed to DILIs in a few select individuals (Chitturi, 2008). Approximately 4% of the United States population is Asian, but 71% (5/7) of the people experiencing acute hepatitis with LipoKinetix use in one case series report were Japanese nationals (Favreau, 2002). Three Taiwanese sisters consuming a usnic-containing fat-burner experienced dark urine, jaundice, and hepatitis, respectively (Hsu, 2005).

Another example is the leading drug responsible for idiosyncratic DILI, the antibiotic amoxicillin-clavulanate (Lucena, 2011), which causes more liver injuries in people bearing certain alleles, especially among the Spanish population (Stephans, 2013).

Concomitant Drugs (or DS)

The competition for liver enzymes suggests that certain drug-drug, drug-DS, or DS-DS interactions can be predisposing factors for liver injuries. The possible competition between co-administered substances for liver enzymes would explain certain case reports where liver injury followed the addition of a drug or DS to a previously unproblematic drug or DS regimen (Chalisani, 2014 ACG). When the same enzymes in the liver must metabolize two substances, the rate of metabolism of one or both compounds may be altered (Zhou, 2007). Alcohol interferes with drug metabolism and is often contraindicated with certain drugs.

Underlying Disease

Co-morbidity may also increase the risk of liver injuries and mortality is significantly higher in individuals with pre-existing liver disease (Chalasani, 2015). This is concerning since approximately 18% of chronic liver disease patients surveyed were taking herbal supplements (Ferrucci, 2010). Perhaps the safest approach for people on medications with pre-existing medical conditions is to avoid any DS, except perhaps a standard multivitamin/mineral supplement. Likewise, anyone undergoing a transplant or skin grafts may best avoid DS entirely, especially St. John's wort, which has been reported to reduce cyclosporine levels, resulting in the rejection of transplanted organs or graft loss (Zhou, 2007). Milk thistle, often used to promote liver health, reduces the mean trough level of the HIV drug, indinavir, by 25% (Zhou, 2007).

Causality Scoring Systems

DILI or DSILI diagnosis is primarily a process of elimination based on mathematical probability (Garcia-Cortes, 2011). Expert opinion remains the gold standard, with a

physician reviewing the patient's history, blood test results, hepatobiliary imaging, and, possibly, liver biopsy results (Chalasani, 2014). After a liver injury is clearly diagnosed, the cause is pinpointed through any of several methods divided into three categories: (1) expert opinion, (2) probabilistic approaches, and/or (3) scoring scales (liver-specific or general) (Garcia-Cortez, 2011).

The most commonly used liver-specific scale is that developed by the Council for International Organizations of Medical Sciences (CIOMS), also known as the Rouseel Uclaf Causality Assessment Method (RUCAM) (Garcia-Cortez, 2011). A checklist is reviewed by a clinician, who assigns points to each variable. The total score is evaluated using a probability scale: ≤ 0, excluded; 1-2, unlikely; 3-5, possible; 6-8, probable; ≥ 9, highly probable/definite. The MV Scale or Clinical Diagnostic Scale (CDS) is a shortened version of the CIOMS scale (Maria, 1997) (Teschke, 2013a). On the other hand, the more recently developed Digestive Disease Week–Japan (DDW-J) scale (Takikawa, 2003) derived from the CIOMS scale was reported by Garcia-Cortez (2011) to be superior to that of the CIOMS. Non-liver-specific scales or those not validated for hepatotoxicity include the Naranjo Scale used in clinical trials (Naranjo, 1981), the WHO-UMC causality assessment (WHO), and the ad hoc approach (Kaplowitz, 2001). The strengths and weaknesses of these different causality assessment tools were reviewed by García-Cortés and associates (2011).

Some researchers have expressed the "urgent need for a universally accepted stepwise causality assessment" scoring scale that should then be further evaluated in the field (Teschke, 2008). They stressed the importance of replacing the currently approved, but different, approaches of hospitals, physicians, health care agencies, manufacturers, and

expert groups, which use their own method(s) that may or may not be free of conflicts of interest. Legitimate concern has been expressed regarding the US Pharmacopeia's (USP's) use of the Naranjo and not the CIOMS scale or its validated update to conduct DS liver-specific causality assessments (Teschke, 2012a).

These scoring systems are important because drug or DS-related liver failure rarely occurs, and if a cluster of failures occur, it is imperative to quickly track down the cause and prevent further cases. A cluster of cases often points to one common denominator that can be mathematically determined as either a random or statistically significant event. Another strong support for causation is similar symptoms with re-exposure to a substance—i.e., symptoms stabilize following withdrawal, reappear with reintroduction, and disappear again following a second withdrawal. These rechallenge tests unintentionally created by the patient are the gold standard in diagnosing hepatotoxicity (Teschke, 2008).

Causality Assessment Considerations

Approximately 47% of suspected DILI cases are in fact not caused by drugs, and researchers have stated the same is true for DSILI cases. "In 573 cases of initially assumed HILI (DSILI), 48.5% showed alternative causes. They called for thorough clinical evaluations and appropriate causality assessments in future cases of suspected DSILI" (Teschke, 2013c). These alternative causes included co-medication (DILI and other HILI) (43.9%), biliary and pancreatic diseases (11.5%), autoimmune diseases (10.4%), pre-existing liver diseases (including cirrhosis; 9.7%), viral hepatitis (9.7%), nonalcoholic and alcoholic liver diseases (5.4%), and infectious diseases involving the

liver (4.7%). Establishing liver injury causality is necessary for accurate prevalence determinations or comparisons.

Treatment of DILI

DILI treatment consists of immediately withdrawing the responsible medication; many patients start to improve within hours or days (Chalisani, 2014). In one study, most of the 70 patients with elevated liver enzymes and a normal liver biopsy recovered (Strasser, 2015). However, approximately 14% go on to develop chronic liver disease (Chalisani, 2014). DILI from antidepressants may be irreversible (Voican, 2014). A minority of patients experience acute liver failure and may die or require emergency transplantation (Fontana, 2010).

Sometimes the liver has an autoimmune reaction to certain drugs or metabolites that bind to a liver protein (such as cytochrome p450), generating an antigen, or result in dead cells; both can trigger the immune system (Yuan, 2013). Particular attention should be given to patients who present with positive autoantibodies or a history of weight gain or alcohol consumption. (Chalsani, 2014).

Prevalence of DILI and DSILI in North America & Europe

DILI cases, whether they are caused by drugs or DS, are not tracked through annual surveillance. DILI is rare for most drugs, occurring in approximately one per 10,000-1,000,000 persons exposed (Fontana, 2010). However, epidemiologic data suggest that the rate might be as high as 20 DILI cases per 100,000 people exposed in Western countries (Leise, 2014). The prevalence of DILI is largely unknown, as hospitals and

liver centers do not appear to have similar causality determinations or report to one agency.

Retrospective and Prospective Prevalence Studies

DILI epidemiology research results are influenced by study design, study definitions, inclusion or exclusion of acetaminophen, geography, culture, genetics, inclusion or exclusion of complementary medicine (definitions vary), and whether the researchers report conflicts of interest (Björnsson, 2013; Leise, 2014). Few prospective population-based studies have attempted to decipher the relatively low frequency of liver injuries (Fontana, 2010). Several relevant findings are briefly summarized here even though data from registries cannot be considered population based (Raschi, 2015).

Among 83,265 in-patient admissions at the Mayo Clinic in Scottsdale, Arizona over 7 years (1998-2006), only 0.048% (N=40) were due to DILI. That is equivalent to 5.7 cases per year. Seventy percent of these (27/40) were due to acetaminophen (APAP), and 33% (13/40) to non-APAP drugs, primarily antibiotics (Carey, 2008). No cases of liver injury caused by herb use were reported at this location during these 7 years.

Although DILI is a relatively rare occurrence (Chalasani, 2008), the FDA cites it as the number one reason for withdrawing drugs from the marketplace over the past 50 years (FDA-b, 2009). Only about 1% of all marketed drugs were withdrawn or restricted (Wysowski, 2005), so those causing hepatotoxicity would represent only a fraction of 1%. More than 800 drugs have been implicated in DILIs (Kaplowitz, 2004). Excluding APAP, the drugs most commonly involved are antibiotics and antiepileptics, which are responsible for over 60% of the DILIs (Chalasani, 2010). Drugs are the number one

cause among the approximately 2000 annual cases of acute liver failure (ALF) in the United States (FDA, 2009). However, about half of these DILIs were due to APAP (Lee, 2012), and almost half of the APAP-related cases were suicide attempts with excessive doses (FDA, 2007). Fontana (2008) estimated that 500 deaths due to APAP occur in the U.S. annually. In 2015, the other major causes of acute liver failure, in descending order, were undetermined (12%), non-APAP drugs (11%), autoimmune conditions (7%), hepatitis B (7%), and hepatitis A (2%).

Acute liver failure is the diagnosis in approximately 11% of the DILIs in the United States. One of the most serious consequences of liver injuries, liver transplant, is even less common (Leise, 2014).

DILI versus DSILI Prevalence

The true prevalence of DSILI is unknown (Stickel, 2015). However, DS contribute significantly less than pharmaceuticals to reported cases. When considering all liver injuries and not just acute liver failure, Bunchorntavakul et al. estimated that, "based on available data of DILI cohorts from the US and Europe, herbal products are implicated as a cause of hepatotoxicity in 2-11% of patients" with DILI (Bunchorntavakul 2013).

In 2003, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) established the Drug-Induced Liver Injury Network (DILIN) consisting of 8 academic medical centers and a data coordinating center (www.dilin.org) (Fontana, 2014). A DILIN retrospective evaluation of United States liver injuries enrolled the first 300 patients diagnosed with drug-induced liver injuries between September 2004 and December 2007 (Chalasani, 2008). They suspected single prescription drugs in 73%

(217/300; 72 cases/year) of DILIs, multiple agents in 18% (55/300; 18 cases/year), and DS in 9% (28/300; 9 cases/year). The most common single causative drug was the antibiotic amoxicillin-clavulanate (combination drugs do not undergo FDA clinical studies because each drug has already been tested), followed by isoniazid and then non-steroidal anti-inflammatory drugs (Leise, 2014). Acetaminophen cases, responsible for almost half of acute liver failures, were excluded from the calculations, which inflates the DS percentage. Also, the 9% of DS cases reported by Chalasani (2008) involved a total of 28 supplements, but 7 (25%) of these contained anabolic steroid-like substances for muscle enhancement. Excluding these products results in a more accurate estimate of DSILI cases, at 7% (21/300; 7 cases/year). If liver injuries from all causes were included, and not just those caused by drugs and/or DS, then the percentage of liver injuries from DS would be even lower.

Even fewer DSILIs were observed in Spain, where only 2% (11/570) of DILI cases were associated with DS (1994 to 2004) and 81% (461/570) were related to drugs (Andrade, 2005). In Iceland, Björnsson et al. (2013) reported that the crude annual DILI rate was 19.1/100,000 inhabitants with amoxicillin-clavulanate most commonly implicated based on their prospective study of 96 patients. Italy's DILI rate was estimated to be 1.3% (136/10,270) in an 11-year retrospective study (2000-2011) (Licata, 2014).

Prevalence of Acute Liver Failure Leading to Liver Transplant or Death

The most serious DILIs, which result in liver transplant and/or death, are significantly
more likely to be caused by drugs than DS. Among 446 cases of liver disease in a

Spanish study (1984-2004), drugs resulted in 5 liver transplants and 15 deaths,
whereas medicinal herbs were implicated in no liver transplants and 1 death (Andrade,

2005). In essence, over this 10-year period there were 1.5 deaths a year and a liver transplant every other year due to drugs, but only 1 death and 0 liver transplants due to herbs. In the United States, Chalasani et al. reported 13 liver transplants resulting from DILI (6%; 13/217), compared to 1 liver transplant due to DSILI (4%; 1/23), for the 3.25-year period between 9/2004 and 12/2007 (Chalasani, 2008). More importantly, while 11% (23/217) of DILIs resulted in death, none of the DSILIs did. A DILIN prospective study by Chalasani (2015) reported that 10% of the 899 patients underwent a liver transplant (4%) or died (6%) within 6 months. These cases appear to be drug related, as DS were not mentioned as contributing to serious events.

Russo et al. investigated the number of drug-induced acute liver failures resulting in transplantation by reviewing records for 1990 to 2002 from the United Network for Organ Sharing liver transplant database (Russo, 2004). Of the 2,291 transplant cases, 15% or 357 were due to acute hepatic necrosis from drugs (range 8-20%/year). Of these, 270 met criteria for inclusion in their study, and acetaminophen was responsible for approximately half of acute liver failures (46%; 124/270). Non-acetaminophen cases were primarily due to other drugs (51%; 137/270); only 7 cases (5.1%) in a 12-year period were attributed to herbs—three of these were kava-kava, chaparral tea, and vitamin A. That amounts to one DS-related liver transplant case every 4 years. When the entire 357 DILI cases are included (and not just the 270 not related to acetaminophen), 97% are attributable to drugs, but only 3% to DS.

The DILIN's goal was to quantify the number of DILIs in the United States. In 2014, Fontana and associates evaluated the records of the first 660 cases of DILI from the DILIN and reported that 62 of these cases resulted in liver transplant or death (Fontana,

2014). Of these, 52 DILI cases (8% of 660)comprised 22 liver transplants, 9 liver failure deaths, and 4 non-hepatic deaths. The 10 cases (1.5% of 660 DILI) associated with DS resulted in 8 liver transplants, 1 liver failure death, and 1 non-hepatic death. These cases occurred over a period of 7 years (9/2004-6/2011), so the average numbers of liver transplants and deaths per year for drugs were 3.1 and 1.3 respectively, while numbers per year for DS were 1.1 and 0.14.

It is not known how many of these liver transplants and deaths were due to illegal anabolic steroids because a full list of DS products implicated was not provided in the article (Chalasani, 2008 and 2015; Fontana, 2014). The prevalence of DSILIs would be even lower if products containing anabolic steroids were excluded—as they should be because these known liver toxins are controlled substances that cannot be sold without a prescription, and products that contain them not legal dietary supplements. Without distinguishing legal DS from adulterated products, one cannot calculate an accurate annual incidence or prevalence of DSILIs and/or DS-related transplants and deaths. In an earlier DILIN study reviewing 300 subjects, 26% (7/27) of the implicated DS appeared to be designer anabolic steroids (Chalisani, 2008). Extrapolating that to the 10 cases in Fontana's (2014) study, removing 26% (2.6 cases) would result in only 7.4 cases of liver transplant or death over 7 years to equal 1 case a year.

Considering the broader picture, the American Liver Foundation estimates there are 6,000+ liver transplants a year (www.liverfoundation.org), and Table 2 reveals that almost half are due to hepatitis C and alcoholic liver disease (Luu, 2014). The overall contribution of DS to liver transplants and deaths compared to pharmaceuticals is

minimal, but both become significantly smaller in comparison to all other causes of liver transplants.

DILI and DSILI Prevalence in Asia, Africa, South America, and Other Areas

A real concern is the apparently higher rate of DSILIs in certain countries, especially in areas where traditional medicine is an integral part of society that has been practiced for thousands of years.

After Ayruvedic (Indian) medicine, one of the oldest traditions of herbal medicine originates in China, where it was practiced as far back as thousands of years BC (Stickel, 2015). Attributing liver injuries to a particular Chinese herb is difficult because traditional Chinese medicine (TCM) administers mixtures of several different herbs. Over 13,000 mixed herbal preparations exist, making it difficult to identify either the active component or the causative agent contributing to liver injury (Stickel, 2015).

In China, a database search (1994-2011) found the top four causes of DILI to be tuberculostatics (31%), the broad category of complementary and alternative medicines (CAMs) (19%), antibiotics (9%), and NSAIDS (5%) (Zhou, 2013). A retrospective study of 138 DILI patients in China (2008-2010) found that Chinese herbal medicines (54%; 74/138), antibiotics (8%;11/138), and dietary supplements (6%; 9/138 or 4-5 yearly) were primarily responsible (Lai, 2012). Korea had even higher rates of DS-related liver injuries at 70% as reported by Suk et al. (2012), who evaluated 371 cases reported by 17 different hospitals between 2005 and 2007. However, they admitted that their broad classification of various "herbal medications or preparation," "health foods or dietary supplements," and "folk remedies" "was a difficult and often a vague process" (Suk,

2012). Even then, their rate of combined drug- and DS-related deaths and liver transplants was low at 2% (7.42 cases/3 years or 2.47 cases annually). A retrospective study analyzing the 16,696 adverse events (due to conventional medicines, CAM, and cosmetics) in the Singapore Pharmacovigilance database (1998-2009) found that approximately 3.8% were due to CAM products (Patel, 2012). The majority of DS cases were for sexual performance preparations (46.4%; 291/627), followed by pain remedies (5.9%; 36/627) and weight-loss aids (4.3%; 27/627). Overall, approximately 52 adverse event cases including 2 deaths per year were due to CAM (1 death a year due to hepatotoxicity). Hypoglycemia was the number one CAM-associated adverse event (46%; 288/627), suggesting that potent hypoglycemic agents from plant sources may compete with metformin, one of the most popular oral hypoglycemic drugs for diabetes, and a medication itself originating from a plant.

The prevalence of DILI is difficult to accurately assess, and the prevalence of DSILI is even more so. Studies reporting on their prevalence are very limited, vary widely in methodology, and may include or exclude acetaminophen cases—preventing consistent comparisons. Further complicating matters, plant names and uses vary among geographical regions and DS are defined differently or are pooled under the less defined and broader CAM category. As a result, rates of DILI, and especially DSILI, are not readily determined.

Creating Tables of Harmful DS

An "online table" providing a summary of potentially life-threatening, hepatotoxic herbs based on a thorough review of PubMed case reports has been previously unavailable in

the United States. The goal of this research review was to create a "Toxic Table" summarizing the DS case reports reported in PubMed associated with liver injuries.

LiverTox.nih.gov does list selected drugs and DS associated with liver injuries, but the list is not yet complete, herbs not associated with liver injuries are included, and it is not summarized in tabular form. One review found that 60 different herbs, herbal drugs, and herbal dietary supplements (non-herb dietary supplements were not included) were related to liver injuries (Teschke, 2012b). In contrast, the purpose of this publication was to create a series of online "Harmful Herb and Dietary Supplement Tables" based on case reports (reviews not included) related to liver, renal, cardiac, and neoplastic illnesses that could then receive ongoing, immediate updates, along with offering a standard DSILI reporting form for clinicians that could be written up in coauthorship with the present author to be quickly published in PubMed.

This virtual online table can now be updated by researchers with each newly reported case report in order to provide immediate awareness of potentially hepatotoxic DS (link) (**Tables 3 & 4**). This will be the "first online review article" that can be updated with emerging research reports, and will serve as a template for other review articles facing the constant challenge of being outdated by the date of publication. These "Toxic Tables" can be used to forewarn consumers, clinicians, and manufacturers.

Methods: Literature Search

Documented PubMed case reports (1966 to June, 2016, and cross-referencing) of DS appearing to contribute to liver toxicity were listed in "Toxic Tables." The broad search

included the keywords of "plant extracts" or "plant preparations" with "liver toxicity" and "toxicity" ["human" species always checked]. The narrowed search included the keywords of "herb" () or "dietary supplement" (combined with "liver" to generate an overview list, and possibly "toxicity" to narrow the selection. Specific herb "names" found through this process were combined with "liver toxicity." "Hepatotoxic" "herbs" or "supplement" or "dietary supplement" were searched for more precise articles. The letter "s" was added or removed to herb or dietary supplement to generate the greater abstract number. Case reports were excluded if they involved herb combinations (some exceptions), Chinese herb mixtures, teas of mixed herb contents, mushrooms, poisonous plants, self-harm, excessive doses (except vitamins/minerals), legal or illegal drugs, drug-herbal interactions, and confounders of drugs or diseases. Since commercial dietary supplements often include a combination of ingredients, they were treated separately. Lastly, a third table of case reports consists of publications including insufficient data to assess DSILIs. The spectrum of herb-induced liver injuries researched included elevated liver enzymes, hepatitis, steatosis, cholestasis, hepatic necrosis, hepatic fibrosis, hepatic cirrhosis, veno-occlusive disease, acute liver failure requiring a liver transplant, and death. Only the most serious liver injuries were listed (e.g., elevated enzymes, fatique, abdominal pain, dark urine, etc. were not listed). English articles were the primary focus, but some reports in other languages were considered.

Results: DS-Related Liver Injuries

Approximately 21 herbs were related to liver injury case reports that include, but are not limited to: aloe vera (*Aloe barbadensis*), arrowroot juice (*Maranta arundinacea* & others?), black cohosh (*Actaea racemosa*), cascara (*Cascara sagrada*), celandine

(Chelidonium majus L.), chaparral (Larrea divaricate), comfrey (Symphytum officinale), fo-ti (Polygonum multiforum), gota kolu (Centella asiatica), green tea extract (Camellia sinensis), groundsel (Senecio vulgaris), Hathisunda (Heliotropium eichwaldii), Impila (Callilepsis laureola), Jin bu huan (Lycopodium serratum), kava (Piper methysticum) extract, pennyroyal (Mentha pulegium), rattlebox (Crotalaria sessiliflora), senna (Cassia angustifolia), skullcap (Scutellaria lateriflora), thistle (Atractylis gummifera), and valerian (Valeriana officinalis L.). Two additional herbs, Germander (Teucrium chamaedrys L.) and usnic acid (Usnea lichens), are no longer allowed for sale in the United States. Approximately 16 DS were related to liver injury case reports that include, but are not limited to: Bakuchi tablets, conjugated linoleic acid (CLA), Euforia, Exilis, glucosamine/chondroitin, Herbalife[®], Inneov masa capilar[®], Kalms Tablets, Lipolyz® or Somalyz, Ma huang, Move Free Advanced, niacin (nicotinic acid), Pro-Lean, Sennomotokounou, UCP-1, and vitamin A (excess). Nine additional DS (or older formulations) are no longer sold in the United States including anabolic steroids, Flavocoxid, Hydroxycut, LipoKinetix[®], OxyElite Pro[®], Sennomotokounou, Venencapsan[®], venoplant, and usnic acid. The names, ingredients, and corporations of dietary supplements can change so those listed here may not reflect current products on the market. The DS with the most number of reported publications, but not always cases studies, in descending order, were germander, black cohosh, kava extract, and green tea extract.

Discussion

Herb-Related Liver Injuries

Over the last 50+ years (1966-2015), approximately 21 herbs have been reported in PubMed to be associated with liver toxicity in case report publications. Although the number of publications does not always reflect the number of case reports, the herbs with the highest number of publications (not cases), in descending order, were (number in the last 10 years is in parentheses):

Germander (*Teucrium chamaedrys L.*) – 23 (7) no longer sold

Black cohosh (*Actaea racemosa*) — 13 (12) USP warning label

Kava (*Piper methysticum*) (extract) — 10 (1) Not admitted by USP

Green tea extract – 9 (8)

Chaparral (*Larrea divaricate*) – 9 (0)

Aloe vera (Aloe barbadensis) - 7 (7)

Greater celandine (Chelidonium majus L.) - 7 (3)

Total = 78 (1.56 publications/year)

Germander, the herb with the largest number of publications, no longer appears for sale (as a single ingredient) in a Google search (English language) as of December 2015. The US Pharmacopeia (USP) has already declared that certain supplements are only safe when labeled with a suitable labeling statement, and stated that kava was the only herb to date judged as not safe irrespective of label statements. Kava is no longer available in certain countries, but is sold in the United States and via the Internet. USP also suggests warning labels for black cohosh and green tea extract with regard to possible liver damage. At least two published reports associate liver injury with drinking excessive quantities of green tea. Chaparral, aloe vera, and celandine are also sold on the Internet. It is recommended that the USP review these herbs for possible proper

labeling statement warnings. Based on reports from the last ten years, and the fact that germander appears to be unavailable, black cohosh (12 publications), green tea extract (8), and aloe vera (7) currently appear to be the main potentially problematic herbs.

However, in terms of quantity, these three herbs resulted in 27 publications over the last decade, or approximately 3 reports annually.

The remaining herbs had 6 or fewer publications each in the last 10 years. However, five are still sold on the Internet: fo-ti (Shou Wu Pian) has been associated with 18 cases of hepatitis; pennyroyal was implicated in two deaths, indicating that infants should not be given this herb as a colic treatment; senna is a laxative related to a liver necrosis report; skullcap was associated with 2 liver transplants and a death; and valerian was related to a liver fibrosis report.

Other herbs with serious rare implications, but not widely available on the Internet, include impila, associated with liver and kidney failure and death, especially in children; rattlebox (appears to be harvested from local plants), which should not be used in infants, especially in Mexico or the Southern states, as a death has been reported; thistle (not milk thistle), reportedly related to liver failure and death; and usnic acid extracted from lichen, which appears to no longer be sold due to liver toxicity and death reports. However, moss, lichen, and a liquid extract of unknown concentration were being sold on the Internet.

In summary, the most egregious herb, germander, is no longer for sale; the next three most prominent offenders (black cohosh, kava, and green tea extracts) have or should have designated warning labels; and the last three, chaparral, aloe vera, and greater

celandine, had infrequent liver injury reports over the last 50 years and may require warning labels. Chaparral was actually removed from the GRAS list in 1970, but is still found for sale on the Internet. No liver toxicity cases attributed to chaparral have occurred in the last 10 years, which is positive news because liver failure was previously reported. Only 10 total publications involving aloe vera or greater celandine have appeared in the last 10 years, hepatitis was the worst symptom reported, and there were no reports of liver transplant or death; nevertheless, caution may be justified. The remaining herbs have far fewer publications, but that does not negate their possible implications in liver toxicity—especially fo-ti, pennyroyal, senna, skullcap, and valerian.

Although traditional herbs from Asian, African, or other countries were not included in this review, a review of Traditional Chinese Medicine (Teschke, 2014) suggests that they appear to have a higher rate of HILI. Therefore, the need to review TCM remedies for related liver injuries may be greater, and any new case reports can be inserted into the "Toxic Tables." These tables document DSILI case reports, and although not all are yet included, additional past or future reports from all possible published sources may be submitted for addition to the table.

Dietary Supplement-Related Liver Injuries

Identifying a dietary supplement is not always an easy task. Dietary supplement formulations can and often do change with or without product name changes. There are many reasons this occurs. One motivation is receiving a Warning Letter from the FDA regarding a particular ingredient. In addition, a single product name may designate a range of different products identified by sub-category names (Supplement A, Supplement A-Max, Supplement A-Max Super). As such, this review simply reports on

the previously published reports of dietary supplements that may or may not represent current product names and/or ingredients. In some cases, PubMed authors did not include the dietary supplement's brand name and/or other ingredients.

This review identified approximately 16 dietary supplements (minus 9 no longer sold) related to liver toxicity in PubMed publications over the last 50 years. Only case reports were included, so a review listing dietary supplements related to liver injuries without case report information did not meet the criteria for this report. Even if such a list was provided, a dietary supplement was usually only listed once or twice, which can pale in comparison to sales. A great many factors can contribute to these single instances lacking sufficient information and thus being included in Table 5; the three most common confounding factors were underlying disease in subjects, use of mixed herbs, and inclusion of drugs. Also, approximately 24% of dietary supplements listed in previous prevalence studies were actually designer anabolic steroids—that is, illegal drugs rather than supplements.

As mentioned previously, many bodybuilding products may contain steroid substances, which are known liver toxins, and thus should be excluded from DS statistics as illegally marketed controlled substances. Under current regulations they should be removed from store shelves as well. To include dietary supplements or illegal drugs related to liver toxicity in a list of legitimate drugs related to liver toxicity is not equitable. The same applies to including drugs, especially illegal drugs, in a list of dietary supplements implicated in liver injuries. As such, steroid dietary supplements were not included in this review, nor should they be included in future reviews unless the goal is to increase the perceived harm caused by legitimate dietary supplements. Failing to mention whether anabolic steroids and other drugs are included and in what amounts when

reporting DSILIs makes the degree of risk legal DSDS present more difficult to discern. Currently, when research articles that omit this information are cited in the U.S. media through press releases, a possibly unfounded bias against DSDS is being propagated.

Weight-Loss Products. Navarro (2013-b) stated that DS sold for bodybuilding and weight loss are the most commonly associated with DSILI. It is not surprising that weight-loss products—specifically, certain product lines of Herbalife, Hydroxycut, and Oxy Elite Pro that may no longer be sold—feature in the highest number of published case reports related to liver injuries. These were highly successful products marketed to millions of people and so sheer volume may have contributed to the probability of adverse reactions. Some of these products were "fat burners," defined as dietary supplements claimed to speed fat loss by increasing energy metabolism (burning calories), breaking down fat, and reducing cravings. The "burn" is claimed to be manifested by a higher body temperature and/or heart rate, both of which simulate the experience of exercise (Krishna, 2011). However, these effects may be due to stimulants and/or extracted and/or synthesized chemicals that may be harmful to the liver, heart, or other organs.

The list of possible fat burner ingredients includes caffeine, carnitine, green tea extract (EGCG), conjugated linoleic acid (CLA), garcinia cambogia (hydroxycitric acid extract claimed to inhibit ATP-citrate lyase, the enzyme response for fatty acid synthesis), forskolin (not for pregnant women; an extract from the Indian coleus plant that increases cAMP), chromium, kelp (which can negatively affect the thyroid gland), and fucoxanthin (brown seaweed pigment) (Jeukendrup, 2011). Sibutramine, an appetite suppressant,

or other drugs have been found in fat burners but not on their labels, which violates FDA adulteration and labeling laws.

The most serious problem associated with fat burners or other designer dietary supplements is the recent trend to isolate a single ingredient from a plant (either by extracting or synthesizing it) and place it in the dietary supplement without informing the FDA by submitting it as a New Dietary Ingredient (NDI) or submitting a New Drug Application (NDA). Article 2 of this series discusses this problem and the existing regulations under which this process is illegal. An example is aegeline, a single chemical from the sacred bael plant from India that was synthesized and inserted into one of the OxyElite Pro product lines (Long, 2013). The FDA sent out Warning Letters to the manufacturers of OxyElite Pro, along with other fat burners such as certain green tea extract-containing products, Hydroxycut, and LipoKinetix.

Illegal sale of medications as DS remains a concern. For instance, the FDA recalled Akttive High Performance Fat Burner Gold because it was adulterated with the drugs sibutramine, desmethylsibutramine, and phenolphthalein.

Withdrawal of Hepatotoxic Products. As a result of FDA actions and/or other factors, approximately 36% (9/25) of the DS related to liver toxicity in these tables are no longer sold. These include anabolic steroids, Flavocoxid, Hydroxycut® (earlier version), LipoKinetix®, Oxy Elite Pro®, Sennomotokounou, Venencapsan®, Venoplant, and usnic acid (highlighted in gray in Tables 3 & 4). It is possible that many of the listed dietary supplements now have different formulations and no longer contain the suspect

ingredient(s). Only one product listed in the Tables was still sold on the Internet, and that was usnic acid, but it consisted of a liquid extract of an undisclosed concentration.

A Balanced Perspective

This review reveals that over the past 50 years, only 19 herbs (minus germander and usnic acid) and 13 dietary supplements (minus the six no longer sold) posed a possible risk for liver injures in certain individuals. Vitamin A and niacin were on the list due to excessive intake (a disqualifying criteria), and it should not be forgotten that these are known liver toxins at high doses. The list would be slightly longer if Chinese herbs were included, but this was a difficult task given that these remedies traditionally do not consist of just one herb, and many of the relevant case reports may be published in other languages. Nevertheless, these case reports can be added to the online tables in the future.

In summary, making the following corrections to the calculations determining the DS contribution to liver injuries in previous articles yields a more balanced perspective:

1) Liver injury prevalence is unknown. There is no annual incident count collected by one government or non-profit agency from clinicians and hospital liver centers. As such, the prevalences of DILIs and DSILIs obtained from DILIN were not derived from a population-based study (Vuppalanchi, 2015), and most research is either retrospective or prospective and based at selected clinical settings over a selected time period and with an arbitrary subject number selection. As a result, no two prevalence studies are similar and therefore making comparisons between studies and for different time periods (years) is difficult.

- 2) Liver injuries are rare. What is known is that the prevalence for DILIs is so low that these injuries are classified as rare. In comparison, the prevalence for DSILIs is even lower—that is, they are even rarer. Drugs far outnumber DS as DILI causes and the most commonly responsible drugs are antibiotics, antieleptics, and non-steroidal anti-inflammatory drugs (NSAIDs). Over 1100 classical drugs (estimates vary widely) are potentially hepatotoxic (Larrey, 2005), but only approximately 16 DS products have documented hepatotoxicity cases based on this review. Nine additional DS are no longer sold in the United States... More specifically, The Physicians' Desk Reference (PDR, 2016) listed 370 drugs possibly causing hepatic abnormalities, 124 drugs contraindicated in people with liver disease, and 90 drugs labeled as possible causes of acute liver failure (Kaplowitz, 2004). Many of these drugs remain on the market despite liver injury potential with the expectation that the physician will conduct liver enzyme tests. One example is methotrexate, used for over 50 years; it can improve psoriasis symptoms in 60% of patients, but 33% experience liver injuries that may simply include elevated enzymes (Barker, 2010). Tyrosine kinase inhibitors (TKIs) were found related to increased ALT, AST(lacovelli, 2014).
- 3) Current DSILI estimates appear inaccurate. Improved scientific accuracy of DSILI statistics would be achieved by:
 - a) Adding DS categories. A recent publication stated that "...among DILI cases DS are the second most common cause" (Chalisani, 2014), but this ranking was determined by dividing the 609 drugs studied into nine categories while combining all 145 DS into a single category for comparison (Chalisani, 2015). The DILIN actually created 13 categories

- for DS, but these categories were not used when reporting that DS were the "second most common cause" of liver injuries (Vuppalanchi, 2015).
- b) Removing anabolic steroids or other ingredients masquerading as DS from valid DSILI statistical calculations. These products are illegal and their harmful ingredients already regulated by the FDA or other regulatory agencies (McGuffin, 2013).
- c) Including acetaminophen. APAP, the number one cause of acute liver failure and responsible for about 1000 of the approximately 2000 annual cases of acute liver failure, is frequently excluded when evaluating the impact of drugs responsible for DILIs. This unfairly lowers the total number of drugs, while simultaneously inflating the proportion of liver injuries caused by DS. One solution is to exclude only APAP cases due to self-harm, as that is a misuse of the drug.
- d) Including all causes of liver injuries. Comparing DSILIs to the total number of liver injuries from ALL causes provides an accurate perspective of the total number of liver injuries due to DS. The data become unfairly skewed when comparing liver injuries from drugs and DS to their combined totals. For instance, all the other causes of liver transplant listed in Table 2 should be included, along with etiologies for acute liver failure such as undetermined; hepatitis A, B, or C; autoimmunity; ischemia; Wilson's; Budd-Chiari; pregnancy, and other (see Figure 1).
- e) Naming the specific DS products related to liver injuries. Not disclosing the DS related to liver injuries calls into question any statistical conclusions because the reported proportion of DSILI cases cannot be challenged (e.g., how many were illegal steroid drugs?). Unfortunately, such

conclusions are often accepted and repeatedly cited in subsequent studies without scientific scrutiny.

4) The vast majority of serious liver injuries are unrelated to DILI/DSILI. Liver transplant and death are the most serious outcomes of liver injuries; fortunately, only a very small percentage of people experience them. Neither drugs nor DS are primarily responsible. Table 6 shows that the incidences of liver transplant and death resulting from drug use averaged from three major studies equal only 2.4 and 3.1 cases annually, respectively; barely 1 liver transplant and no deaths annually result from DS use. That totals to approximately 5.5 per year for drugs, 1 per year for DS. Omitting the cases due to illegal drugs (approximately 24%) reduces the number of annual cases due to DS by one fourth (0.85 minus 0.20), to equal 0.65 per year. More importantly, these extremely low values for both drugs and DS would become close to zero if all causes of liver injury, such as hepatitis C, were included in the calculations. The U.S. media's emphasis on these "rising" numbers of DSILI cases (less than 1 death a year) is disproportionate given that hepatitis C infection resulted in 1,800 liver transplants (Table 2) and 19,368 deaths in 2013 (CDC, 2015).

When scientific accuracy is increased through these statistical corrections, DSILIs become significantly less frequent than previously reported or portrayed. The overall picture is that most people recover from DILI and DSILI, although a very small minority experience chronic liver disease, liver failure, liver transplant, and/or death. Table 6 reveals the reality that very few people either receive liver transplants or die due to DS-related hepatotoxicity. As such, it appears the "dangers" of dietary supplements have been inflated in the media, and need to be normalized for scientific accuracy. In this

balanced perspective, the existing DS that do pose a hepatotoxic risk to the public should be marked with warning labels (as drugs are) and/or removed from the shelf by existing regulatory authorities, especially if they are illegal and/or fraudulent products.

Current Regulations

The FDA, Federal Trade Commission, State Health Departments, Attorneys General, and Department of Justice work to protect the public from DS-related liver injuries (see Series article 2). As a result, almost one third (6/21) of the DS in this review table are no longer sold (indicated by shaded DS in Tables 3 & 4).

Clustered cases should, but sometimes do not, receive immediate attention. Before calling for stricter DS regulations, however, one should consider the likely effectiveness of this approach. If stringent FDA regulations cannot prevent the 1000 annual DILIs from occurring, then why apply the same regulations to DS when the vast majority are not liver toxic and any potential hazards affect only the 10% or less of the population consuming non-vitamin/mineral DS? If over 1000 drugs are potentially hepatotoxic (compared to approximately 20 DS), and these drugs have not been removed from the market for potential hepatotoxicity, then why is a stricter standard being applied to the dietary supplement industry? In fact, 22 DS represent only 0.02% of the average number of drugs that can be problematic to the liver.

Although rare, DSILIs do occur, and must be immediately intercepted by government agencies. The real solution is to fully and consistently enforce existing laws and regulations. Historically, inconsistent enforcement has allowed a few companies to cross the legal line without any consequences until as recently as 2015. Article one of

this series addresses this issue. Despite the often repeated theme that "regulation is not rigorous enough to assure complete safety of DS products," the fact is that "enforcement" has not been sufficiently rigorous. The recent media emphasis placed on "regulation" appears to be another attempt to support legislative changes, but regulations are already in place and simply need to be "enforced."

Limitations

The "Toxic Tables" in this review series are based on the PubMed indexing of peerreviewed scientific journal articles and while comprehensive, are not entirely inclusive of all the literature, nor should it be viewed as such. Limiting the literature review to this resource ensures some degree of standardization. This review did not cover literature indexing resources of other countries or regions that may have more varied histories or usage of DS (including herbs) as part of their traditional treatments – for example, India (Ayruvedic), China (traditional Chinese medicine), Japan (Kanpo or Kampo), Polynesia, Africa, and South America, and elsewhere. Regional plant names and uses may be different and not identified with those commonly recognized in the United States or reported in PubMed. In addition, this review did not include non-peer reviewed, but possibly more plethoric reports integrated through international toxicity lists, MedWatch, NapAlert, Poison Control Centers, MedWatch, World Health Organization (WHO), commercial entities, and other agencies. The Institute of Medicine recommended that the FDA work with the nation's poison control centers as a source of adverse event reports, but the reliability of date is limited by factors such as inaccurate coding, comedications, incomplete product information, lack of laboratory testing, and inadequate follow-up (Haller, 2008). Incompleteness is also a limiting factor for the tables presented

here as not all case reports may be included. Other case report limitations are discussed in Article 1 of this series (Brown, 2016).

Further limiting the results were the exclusion criteria of case reports involving herb combinations (some exceptions), Chinese herb mixtures, teas of mixed herb contents, mushrooms, poisonous plants, self-harm, excess dose (except vitamins/minerals), drugs or illegal drugs, drug-herb interactions, and confounders of drugs or diseases.

Drug-herb or herb-herb interactions can occur because some herbs act as substrates for cytochrome P450s (CYPs) and/or P-glycoprotein leading to altered drug clearance, response, and toxicity (Yang, 2006). The majority of drug-herb interactions were not severe (Posadzki, 2013), and extensively covered in other reviews (Hu, 2005; Posadzki, 2013; Yang, 2006). Drug-herb interactions are important to consider for the approximately one third (34.3%) of all US adults reporting concomitant DS and prescription medication use (Farina, 2014). It has been recommended that patients on immunosuppressant drugs, and especially transplant recipients, avoid herbs such as St. John's wort and others (chamomile, Earl grey teas, etc.) that can reduce cyclosporine levels (Rahimi, 2012; Nowack, 2005). In addition, the American Society of Anesthesiologists recommends discontinuation of herbal medicines two or more weeks prior to surgery (Dasgupta, 2006).

The most common adulterant in DS is drugs that are either added minutely through accidental contamination of uncleaned manufacturing equipment, or by a deliberate criminal act. Article 2 of this series addresses adulterated products defined by the FDA as "tainted products marketed as DS" (Brown, 2016). Regardless of their source,

toxicities are often under-reported, so published case reports may signal an emerging problem. Underreporting to regulatory authorities and publication in peer-reviewed journals is a repeating theme for case reports, especially in developing countries (Neergheen-Bhujun, 2013). Other reviews on DSILI have been published (Bunchorntavakul, 2012; Chitturi, 2008; Larrey, 1997; Licatta, 2013; Navarro, 2014-a, 2014-b, 2013-b; Pittler, 2003; Posadzki, 2013; Rohilla, 2014; Schiano, 2003; Seeff, 2015; Stickel, 2015, 2011, 2005; Teschke, 2014, 2012-b; Zheng, 2015; Zhou, 2015), but the current table attempts to cite all case reports in a tabular form, does not include reviews, restricts confounding variables, and can be continuously updated online.

Additional Case Reports

The case reports presented here do not reflect all the case reports in the literature, so additional case report submissions, pre-existing or new, are welcomed online. The author is available to assist in writing up case reports for publication, after which the data will be added to the online table.

Toxic Tables for Proactive Protection

These continuously updated online Toxic Tables can now be accessed by consumers, clinicians, and corporations to find DS and/or their ingredients that have been reported to be related to toxicity. If a DS is related to toxicity cases, regardless of how small due to idiosyncratic DS reactions, then why impart the risk to the consumer or corporation? The DS ingredients listed in these tables may need further consideration by government agencies, DS companies, manufacturers, distributors, and formulators.

The safest route for consumers is to avoid these potentially toxic DS. As always, until more information is available, it appears that DS consumption may not be prudent for people with liver, kidney, heart, and/or cancer conditions, organ transplant recipients, two weeks prior to surgery, pregnancy (except prenatal vitamins and minerals), lactation, concomitant medication, underlying disease with the exception of standard dietary therapies, and/or medical treatment without a physician's approval.

These online toxic tables and accompanying case reporting form will help provide continued Phase IV post marketing surveillance to detect possible DS toxicity cases (FDA-d). Perhaps this will help alert the government agencies responsible for upholding existing laws regulating DS, so that future outbreaks can be curtailed or even prevented.

Bullet Summary

Herbs

- Approximately 21 herbs have been related to liver injury case reports (1966 -June, 2016). Germander and usnic acid are no longer sold in the United States.
- The next three most prominent offenders (black cohosh, kava, and green tea extracts) may need warning labels.
 - USP accepts black cohosh into USP Compendia Category A, but with labeled warnings. Discontinue use with symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (see Article 1 in series).
 - USP did not admit kava into USP-NF monograph development process.
 - USP did not admit Phyllanthus amarus extract (whole herb in Class A).

- The last three, chaparral, aloe vera, and greater celandine, had infrequent liver injury reports over the last 50 years, but may still need warning labels.
- The remaining herbs have far fewer publications, but that does not negate their possible implications in liver toxicity — especially fo-ti, pennyroyal, senna, skullcap, and valerian.
- Traditional Chinese Medicine herbal medicinals appear to have a higher HILI rate, suggesting a greater need to review them for related liver injuries.
- Patients taking immunosuppressant drugs, and especially transplant recipients, should avoid herbs such as St. John's wort and others (chamomile, Earl grey teas, etc.) that can reduce cyclosporine levels.
- The American Society of Anesthesiologists recommends discontinuation of herbal medicines two or more weeks prior to surgery.

Dietary Supplements

- Approximately 16 DS in the literature have been related to liver injury case reports (1966 - June, 2016). Approximately 36% (9/25) of the DS related to liver toxicity in these tables are no longer sold. Vitamin A and niacin were on the list, but due to excess intake.
- DS sold for bodybuilding and weight loss, especially "fat burners," are most commonly associated with DSILI. Anabolic steroids are illegal and not DS.
- The most serious problem associated with fat burners or other designer dietary supplements is the recent trend to isolate a single ingredient from a plant (either by extracting or synthesizing it) and place it in the dietary supplement without

- informing the FDA by submitting it as a New Dietary Ingredient (NDI) or submitting a New Drug Application (NDA) (see Article 2 in series).
- The names, ingredients, and corporations of DS can change so those listed here may not reflect current products on the market.

Balanced Perspective

- Liver injuries are rare, and DSILIs are even more rare.
- Current DSILI estimates in the literature should be corrected by:
 - 1. Removing anabolic steroids and other drugs/NDI from DSILI calculations.
 - 2. Including acetaminophen, the number one cause of acute liver failure, and all other causes of liver injuries for valid DSILI estimations.
 - 3. Listing the DS related to liver injuries (as done for drugs).
 - 4. Balancing perspective by reporting the annual liver transplant and death resulting from drug use that averages 2.4 and 3.1 cases respectively, compared to about only 1 liver transplant and zero deaths annually from DS (2014).
 - 5. Realizing that the U.S. media's emphasis on "rising" numbers of DSILI cases is disproportionate to the facts.
- DS that do pose a hepatotoxic risk should be marked with warning labels (as drugs are) and/or removed from the shelf by existing regulatory authorities, especially if they are illegal and/or fraudulent products ("tainted products marketed as DS").

References

Abu el Wafa Y, Benavente Fernández A, Talavera Fabuel A, Pérez Ramos MA, Ramos-Clemente JI. [Acute hepatitis induced by *Camellia sinensis* (green tea)]. [Article in Spanish] An Med Interna. 2005;22(6):298.

Adachi M, Saito H, Kobayashi H, Horie Y, Kato S, Yoshioka M, Ishii H. Hepatic injury in 12 patients taking the herbal weight loss AIDS Chaso or Onshido. Ann Intern Med. 2003;139(6):488-92.

Alderman S, Kailas S, Goldfarb S, Singaram C, et al. Cholestatic hepatitis after ingestion of chaparral leaf: confirmation by endoscopic retrograde cholangiopancreatography and liver biopsy. Am J Gastroenterol 1994;19(3):242-7.

Anderson IB, Mullen WH, Meeker JE, Khojasteh-BakhtSC, Oishi S, Nelson SD, Blanc PD. Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med. 1996;124(8):726-34.

Andrade RJ, Lucena MI, Fernández MC, Pelaez G, Pachkoria K, García-Ruiz E, García-Muñoz B, González-Grande R, Pizarro A, Durán JA, Jiménez M, Rodrigo L, Romero-Gomez M, Navarro JM, Planas R, Costa J, Borras A, Soler A, Salmerón J, Martin-Vivaldi R; Spanish Group for the Study of Drug-Induced Liver Disease. Druginduced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 2005;129(2):512-21.

Andrade RJ, López-Ortega S, López-Vega MC, Robles M, Cueto I, Lucena MI. Idiosyncratic drug hepatotoxicity: a 2008 update. Expert Rev Clin Pharmacol. 2008;1(2):261-76.

Apestegui CA, Julliard O, Ciccarelli O, etal. Energy drinks: another red flag for the liver allograft. Liver Transpl 2011; 17:1117–1118.

Appelhans K, Smith C, Bejar E, Henig YS. Revisiting acute liver injury associated with herbalife products. World J Hepatol. 2011;3(10):275-7.

Araujo JL, Worman HJ. Acute liver injury associated with a newer formulation of the herbal weight loss supplement Hydroxycut. BMJ Case Rep. 2015;2015.

Au JS, Navarro VJ, Rossi S. Review article: Drug-induced liver injury--its pathophysiology and evolving diagnostic tools. Aliment Pharmacol Ther. 2011;34(1):11-20.

Bach N, Thung SN, Schaffner F. Comfrey herb tea-induced hepatic veno-occlusive disease. Am J Med. 1989;87(1):97-9.

Bajaj J, Knox JF, Komorowski R, Saeian K. The irony of herbal hepatitis. Ma-huang-induced haptotoxicity associated with compound heterozygosity for hereditary hemochromatosis. Dig Dis Sci 2003;48(10):1925-1928.

Barakat SE, Adam SE, Maglad MA, Wasfi IA. Effects of Cissus quadrangularis on goats and sheep in Sudan. Rev Elev Med Vet Pays Trop. 1985;38(2):185-94.

Barker J, Horn EJ, Lebwohl M, Warren RB, Nast A, Rosenberg W, Smith C; International Psoriasis Council. Assessment and management of methotrexate hepatotoxicity in psoriasis patients: report from a consensus conference to evaluate current practice and identify key questions toward optimizing methotrexate use in the clinic. J Eur Acad Dermatol Venereol. 2011;25(7):758-64.

Bakerink JA, Gospe SM Jr, Dimand RJ, Eldridge MW. Multiple organ failure after ingestion of pennyroyal oil from herbal tea in two infants. Pediatrics 1996;98(5):944-7.

Banarova A, Koller T, Payer J. [Toxic hepatitis induced by Polygonum multiflorum]. [Article in Slovak] Vnitr Lek. 2012;58(12):958-62.

Bassan M. A case for immediate-release niacin. Heart Lung. 2012;41(1):95-8.

Batchelor WB, Heathcote J, Wanless IR. Chaparral-induced hepatic injury. Am J Gastroenterol 1995;90(5):831-3.

Belfrage B, Malmström R. [Several cases of liver affected by aloe vera]. [Article in Swedish] Lakartidningen. 2008;105(1-2):45.

Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese green tea (*Camellia sinensis*). Ann Intern Med. 2006;144(1):68-71.

Benninger J, Schneider HT, Schuppan D, Kirchner T, et al. Acute hepatitis induced by greater celandine (Cheliodonium majus). Gastroenterology 1999;117(5):1234-7.

Ben Yahia M, Mavier P, Métreau JM, Zafrani ES, Fabre M, Gatineau-Saillant G, Dhumeaux D, Mallat A. [Chronic active hepatitis and cirrhosis induced by wild germander. 3 cases]. [Article in French] Gastroenterol Clin Biol. 1993;17(12):959-62.

Beuers U, Spengler U, Pape GR. Hepatitis after chronic abuse of senna. Lancet 1991;337:372-373.

Bilal M, Patel Y, Burkitt M, Babich M. Linoleic Acid Induced Acute Hepatitis: A Case Report and Review of the Literature. Case Reports Hepatol. 2015;2015:807354.

Björnsson ES, Bergmann OM, Björnsson HK, Kvaran RB, Olafsson S. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology. 2013;144(7):1419-25, 1425.e1-3; quiz e19-20.

Bonkovsky HL. <u>Hepatotoxicity associated with supplements containing Chinese</u> green tea (*Camellia sinensis*). Ann Intern Med. 2006;144(1):68-71.

Borum ML. Fulminant exacerbation of autoimmune hepatitis after the use of ma huang. Am J Gastroenterol. 2001;96(5):1654-5.

Bottenberg MM, Wall GC, Harvey RL, Habib S. Oral aloe vera-induced hepatitis. Ann Pharmacother. 2007;41(10):1740-3.

Brauer RB, Stangl M, Stewart JR, Pfab R, Becker K. Acute liver failure after administration of herbal tranquilizer kava-kava (*Piper methysticum*). J Clin Psychiatry 2003;64:216-8

Brent J. Three new herbal hepatotoxic syndromes. J Toxicol Clin Toxicol 1999;37(6):715-9.

Bunchorntavakul C, Reddy KR. Review article: herbal and dietary supplement hepatotoxicity. Aliment Pharmacol Ther. 2013;37(1):3-17.

Bujanda L, Palacios A, Sil varino R, Sanchez A, Munoz C. [Kava-induced acute icteric hepatitis], Gastroenterol Hepatol 2002;25:434-5.

Campbell TC, Hayes JR. Role of nutrition in the drug-metabolizing enzyme system. Pharmacol Rev. 1974;26(3):171-97.

Caravaca-Magarios F, Cubero-Gomez JJ, Arrobsvaca M. Renal and hepatic injuries in human intoxication with *Atractylis gummifera*. Nefrologia 1985;5:205-201.

Carey EJ, Vargas HE, Douglas DD, Balan V, Byrne TJ, Harrison ME, Rakela J. Inpatient admissions for drug-induced liver injury: results from a single center. Dig Dis Sci. 2008;53(7):1977-82.

Castaño G, Etchart C, Sookoian S. Vitamin A toxicity in a physical culturist patient: a case report and review of the literature. Ann Hepatol. 2006;5(4):293-395.

Castot A, Larrey D. [Hepatitis observed during a treatment with a drug or tea containing Wild Germander. Evaluation of 26 cases reported to the Regional Centers of Pharmacovigilance]. [French] Gastroenterol Clin Biol. 1992;16(12):916-22.

Catanzano G, Delons S, Benyahia TD. [2 cases of poisoning due to "gum thistle" (*Atractylis gummifera L.*). Clinical development and anatomo-pathologic lesions]. [Article in French] Maroc Med. 1969;49(529):651-5.

CDC (Centers of Disease Control & Prevention). Hepatic toxicity possibly associated with kava-containing products--United States, Germany, and Switzerland, 1999-2002. MMWR Morb Mortal Wkly Rep. 2002;51(47):1065-7.

CDC. Hepatitis temporally associated with an herbal supplement containing artemisinin - Washington, 2008. MMWR Morb Mortal Wkly Rep. 2009;58(31):854-856.

CDC. Chaparral-induced toxic hepatitis--California and Texas, 1992. MMWR Morb Mortal Wkly Rep. 1992;41(43):812-4.

Cerda C, Burguera M, Pares A. Hepatotoxicity associated with glucosamine and chondroitin sulfate in patients with chronic liver disease. World J Gastroenterol. 2013;19(32):5381-5384.

Chalasani N, Björnsson E. Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology. 2010;138(7):2246-59.

Chalasani N, Bonkovsky HL, Fontana R, Lee W, Stolz A, Talwalkar J, Reddy KR, Watkins PB, Navarro V, Barnhart H, Gu J, Serrano J; United States Drug Induced Liver Injury Network. Features and Outcomes of 899 Patients With Drug-Induced Liver Injury: The DILIN Prospective Study. Gastroenterology. 2015;148(7):1340-52.e7.

Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, Rochon J; Drug Induced Liver Injury Network (DILIN). Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 2008;135(6):1924-34, 1934.

Chalasani NP, Hayashi PH, Bonkovsky HL, Navarro VJ, Lee WM, Fontana RJ; Practice Parameters Committee of the American College of Gastroenterology. ACG Clinical Guideline: the diagnosis and management of idiosyncratic drug-induced liver injury. Am J Gastroenterol. 2014;109(7):950-66; quiz 967.

Chalasani N, Vuppalanchi R, Navarro V, Fontana R, Bonkovsky H, Barnhart H, Kleiner DE, Hoofnagle JH. Acute liver injury due to flavocoxid (Limbrel), a medical food for osteoarthritis: a case series. Ann Intern Med. 2012;156(12):857-60, W297-300.

Chao S, Anders M, Turbay M, Olaiz E, Mc Cormack L, Mastai R. [Toxic hepatitis by consumption Herbalife products a case report]. [Article in Spanish] Acta

Gastroenterol Latinoam. 2008;38(4):274-7.

Chen GC, Ramanathan VS, Law D, Funchain P, Chen GC, French S, Shlopov B, Eysselein V, Chung D, Reicher S, Pham BV. Acute liver injury induced by weightloss herbal supplements. World J Hepatol. 2010;2(11):410-5.

Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology. 2013;58(1):388-96.

Cheng FK, Dunaway P. A case of supplement-induced hepatotoxicity. Case Rep Med. 2010;2010. pii: 262706.

Cheruvattath R, Orrego M, Gautam M, Byrne T, Alam S, Voltchenok M, Edwin M, Wilkens J, Williams JW, Vargas HE. Vitamin A toxicity: when one a day doesn't keep the doctor away. Liver Transpl. 2006;12(12):1888-91.

Chitturi S, Farrell GC. Hepatotoxic slimming aids and other herbal hepatotoxins. J Gastroenterol Hepatol. 2008;23(3):366-73.

Chiu YK, Lai MS, Ho JC, Chen JB. Acute fish liver intoxication: report of three cases. Changgeng Yi Xue Za Zhi. 1999;22(3):468-73.

Chojkier M. Hepatic sinusoidal-obstruction syndrome: toxicity of pyrrolizidine alkaloids. J Hepatol. 2003;39(3):437-46.

Chow EC, Teo M, Ring JA, Chen JW. Liver failure associated with the use of black cohosh for menopausal symptoms. Med J Aust. 2008;188(7):420-2.

Christl SU, Seifert A, Seeler D. Toxic hepatitis after consumption of traditional kava preparation. J Travel Med. 2009;16(1):55-6.

Church RJ, Gatti DM, Urban TJ, Long N, Yang X, Shi Q, Eaddy JS, Mosedale M, Ballard S, Churchill GA, Navarro V, Watkins PB, Threadgill DW, Harrill AH. Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice. Food Chem Toxicol. 2015;76:19-26.

Cohen DL, Del Toro Y. A case of valerian-associated hepatotoxicity. J Clin Gastroenterol. 2008;42(8):961-2.

Cohen SM, O'Connor AM, Hart J, Merel NH, Te HS. Autoimmune hepatitis associated with the use of black cohosh: a case study. Menopause. 2004;11(5):575-7.

Cooke C, Carr I, Abrams K, Mayberry J. Arrowroot as a treatment for diarrhoea in irritable bowel syndrome patients: a pilot study. Arq Gastroenterol. 2000;37(1):20-4.

Crijns AP, de Smet PA, van den Heuvel M, Schot BW, Haagsma EB. [Acute hepatitis after use of a herbal preparation with greater celandine (*Chelidonium majus*)]. [Article in Dutch] Ned Tijdschr Geneeskd. 2002;146(3):124-8.

Curciarello J, De Ortúzar S, Borzi S, Bosia D. [Severe acute hepatitis associated with intake of Aloe vera tea]. [Article in Spanish] Gastroenterol Hepatol 2008; 31:436–438.

Dantuluri S, North-Lewis P, Karthik SV. Gotu Kola induced hepatotoxicity in a child - need for caution with alternative remedies. Dig Liver Dis. 2011;43(6):500.

Dara L, Hewett J, Lim JK. Hydroxycut hepatotoxicity: a case series and review of liver toxicity from herbal weight loss supplements. World J Gastroenterol. 2008;14(45):6999-7004.

Dasgupta A, Bernard DW. Herbal remedies: effects on clinical laboratory tests. Arch Pathol Lab Med. 2006;130(4):521-8.

Davis DC, Potter WZ, Jollow DJ, Mitchell JR. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci. 1974;14(11):2099-109.

Dao T, Peytier A, Galateau F, Valla A. [Chronic cirrhogenic hepatitis induced by germander]. [Article in French] Gastroenterol Clin Biol. 1993;17(8-9):609-10.

De Smet PA, Van den Eertwegh AJ, Lesterhuis W, Stricker BH. Hepatotoxicity associated with herbal tablets. BMJ. 1996;313(7049):92.

Diaz D, Ferroudji S, Heran B, Barneon G, Larrey D, Michel H. [Fulminant hepatitis caused by wild germander]. [Article in French] Gastroenterol Clin Biol. 1992;16(12):1006-7.

Dong H, Slain D, Cheng J, Ma W, Liang W. Eighteen cases of liver injury following ingestion of *Polygonum multiflorum*. Complement Ther Med. 2014;22(1):70-4.

Dourakis SP, Papanikolaou IS, Tzemanakis EN, Hadziyannis SJ. Acute hepatitis associated with herb (*Teucrium capitatum L.*) administration. Eur J Gastroenterol Hepatol. 2002;14(6):693-5.

Duque JM, Ferreiro J, Salgueiro E, Manso G. [Hepatotoxicity associated with the consumption of herbal slimming products]. [Article in Spanish] Med Clin (Barc). 2007;128(6):238-9.

Durazo FA, Lassman C, Han SH, Saab S, Lee NP, Kawano M, Saggi B, Gordon S, Farmer DG, Yersiz H, Goldstein RL, Ghobrial M, Busuttil RW. Fulminant liver failure due to usnic acid for weight loss. Am J Gastroenterol. 2004;99(5):950-2.

Ebrahim V, Albeldawi M, Chiang DJ. Acute liver injury associated with glucosamine dietary supplement. BMJ Case Rep. 2012;2012.

Elinav E, Pinsker G, Safadi R, Pappo O, Bromberg M, Anis E, Keinan-Boker L, Broide E, Ackerman Z, Kaluski DN, Lev B, Shouval D. Association between

consumption of Herbalife nutritional supplements and acute hepatotoxicity. J Hepatol. 2007;47(4):514-20.

Ellsworth MA, Anderson KR, Hall DJ, Freese DK, Lloyd RM. Acute liver failure secondary to niacin toxicity. Case Rep Pediatr. 2014;2014:692530.

Enbom ET, Le MD, Oesterich L, Rutgers J, French SW. Mechanism of hepatotoxicity due to black cohosh (*Cimicifuga racemosa*): histological, immunohistochemical and electron microscopy analysis of two liver biopsies with clinical correlation. Exp Mol Pathol. 2014;96(3):279-83.

Escher M, Desmeules J, Giostra E, Mentha G. Hepatitis associated with Kava, a herbal remedy for anxiety. BMJ. 2001;322(7279):139.

Estes JD, Stolpman D, Olyaei A, Corless CL, Ham JM, Schwartz JM, Orloff SL. High prevalence of potentially hepatotoxic herbal supplement use in patients with fulminant hepatic failure. Arch Surg. 2003;138(8):852-8.

European Commission, Commission Decisions of 5 June 2003 authorizing the placing on the market of "noni juice" (juice of the fruit of *Morinda citrifolia* L.) as a novel food ingredient under Regulation (EC) Nr. 258/97 of the European Parliament and of the Council. *Official Journal of the European Union* 2003; L 144/12:12.6.2003.

European Commission on Health and Consumer Protection Directorate-General.

Opinion of the Scientific Committee on Food on Tahitian Noni Juice, 2002. Available at: http://ec.europa.eu/food/fs/sc/scf/out151_en.pdf.

Farina EK, Austin KG, Lieberman HR. Concomitant dietary supplement and prescription medication use is prevalent among US adults with doctor-informed medical conditions. J Acad Nutr Diet. 2014;114(11):1784-90.e2.

Favreau JT, Ryu ML, Braunstein G, Orshansky G, Park SS, Coody GL, Love LA, Fong TL. Severe hepatotoxicity associated with the dietary supplement LipoKinetix. Ann Intern Med. 2002;136(8):590-5.

FDA-a. Drug-induced liver toxicity. 08/05/2015.

http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/ucm071471.htm. Accessed 12/15/2015.

FDA-b. Guidance for industry. Drug-induced liver injury: premarketing clinical evaluation. US Department of Health and Human Services, FDA, CDER, CBER, 2009.

FDA-c. Lipkinetix. 08/16/2013.

http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedic alProducts/ucm172824.htm. Accessed 12/1/15.

FDA-d. Postmarketing surveillance programs. FDA, 2014.

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/ucm090385.htm. Accessed 6/26/16.

Federico A, Tiso A, Loguercio C. A case of hepatotoxicity caused by green tea. Free Radic Biol Med. 2007;43(3):474.

Fernández J, Navascués C, Albines G, Franco L, Pipa M, Rodríguez M. Three cases of liver toxicity with a dietary supplement intended to stop hair loss. Rev Esp Enferm Dig. 2014;106(8):552-5.

Ferrucci LM, Bell BP, Dhotre KB, Manos MM, Terrault NA, Zaman A, Murphy RC, Vanness GR, Thomas AR, Bialek SR, Desai MM, Sofair AN. Complementary and alternative medicine use in chronic liver disease patients. J Clin Gastroenterol. 2010;44(2):e40-5.

Fischer DJ, Knight LL, Vestal RE. Fulminant hepatic failure following low-dose sustained-release niacin therapy in hospital. Western Journal of Medicine. 1991;155(4):410–412.

Foley S, Butlin E, Shields W, Lacey B. Experience with OxyELITE pro and acute liver injury in active duty service members. Dig Dis Sci. 2014;59(12):3117-21.

Fong TL, Klontz KC, Canas-Coto A, Casper SJ, Durazo FA, Davern TJ 2nd, Hayashi P, Lee WM, Seeff LB. Hepatotoxicity due to hydroxycut: a case series. Am J Gastroenterol. 2010;105(7):1561-6.

Fontana RJ, Hayashi PH, Gu J, Reddy KR, Barnhart H, Watkins PB, Serrano J, Lee WM, Chalasani N, Stolz A, Davern T, Talwakar JA; DILIN Network. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology. 2014;147(1):96-108.

Fontana RJ, Seeff LB, Andrade RJ, Björnsson E, Day CP, Serrano J, Hoofnagle JH. Standardization of nomenclature and causality assessment in drug-induced liver injury: summary of a clinical research workshop. Hepatology. 2010;52(2):730-42.

Forouhar F, Nadel MS, Gondos B. Hepatic pathology in vitamin A toxicity. Ann Clin Lab Sci. 1984;14(4):304-10.

Fox DW, Hart MC, Bergeson PS, Jarrett PB, Stillman AE, Huxtable RJ. Pyrrolizidine (Senecio) intoxication mimicking Reye syndrome. J Pediatr. 1978;93(6):980-2.

Fu PP, Xia Q, Lin G, Chou MW. Pyrrolizidine alkaloids--genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev. 2004;36(1):1-55.

Fujii H, Takagaki N, Yoh T, Morita A, Ohkawara T, Yamaguchi K, Minami M, Sawa Y, Okanoue T, Ohkawara Y, Itoh Y. Non-prescription supplement-induced hepatitis with hyperferritinemia and mutation (H63D) in the HFE gene. Hepatol Res. 2008;38(3):319-23.

García-Cortés M, Stephens C, Lucena MI, Fernández-Castañer A, Andrade RJ; Spanish Group for the Study of Drug-Induced Liver Disease (Grupo de Estudio para las Hepatopatías Asociadas a Medicamentos GEHAM). Causality assessment methods in drug induced liver injury: strengths and weaknesses. J Hepatol. 2011;55(3):683-91.

García-Cortés M, Borraz Y, Lucena MI, Peláez G, Salmerón J, Diago M, Martínez-Sierra MC, Navarro JM, Planas R, Soria MJ, Bruguera M, Andrade RJ. [Liver injury induced by "natural remedies": an analysis of cases submitted to the Spanish Liver Toxicity Registry]. [Article in Spanish] Rev Esp Enferm Dig. 2008;100(11):688-95.

Garrido-Gallego F, Muñoz-Gómez R, Muñoz-Codoceo C, Delgado-Álvarez P, Fernández-Vázquez I, Castellano G. Acute liver failure in a patient consuming Herbalife products and Noni juice. Rev Esp Enferm Dig. 2015;107(4):247-8.

Georgiou M, Sianidou L, Hatzis T, Papadatos J, Koutselinis A Hepatotoxicity due to *Atractylis gummifera-L*. J Toxicol Clin Toxicol. 1988;26(7):487-93.

Geubel AP, De Galocsy C, Alves N, Rahier J, Dive C. Liver damage caused by therapeutic vitamin A administration: estimate of dose-related toxicity in 41 cases. Gastroenterology. 1991;100(6):1701-9.

Gloro R, Hourmand-Ollivier I, Mosquet B, Mosquet L, Rousselot P, Salamé E, Piquet MA, Dao T. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur J Gastroenterol Hepatol. 2005;17(10):1135-7.

Goksu E, Kilic T, Yilmaz D. Hepatitis: a herbal remedy Germander. Clin Toxicol (Phila). 2012;50(2):158.

Gordon DW, et al. Chaparral ingestion. The broadening spectrum of liver injury caused by herbal medications. JAMA 1995;273(6):489-90.

Gori L, Galluzzi P, Mascherini V, Gallo E, Lapi F, Menniti-Ippolito F, Raschetti R, Mugelli A, Vannacci A, Firenzuoli F. Two contemporary cases of hepatitis associated with *Teucrium chamaedrys L*. decoction use: case reports and review of literature.

Basic Clin Pharmacol Toxicol. 2011;109(6):521-6.

Gow PJ, Connelly NJ, Hill RL, Crowley P, Angus PW. Fatal fulminant hepatic failure induced by a natural therapy containing kava. Med J Aust 2003; 178: 442-3.

Guan YS. A case report of hepatic veno-occlusive disease after ingesting dainties. World J Gastroenterol. 2006;12(41):6734-5.

Gunawan B, Kaplowitz N. Clinical perspectives on xenobiotic-induced hepatotoxicity. Drug Metab Rev. 2004;36(2):301-12.

Guévart E, Aguémon A. [Two cases of fulminant hepatitis during a curative treatment with an artesunate-amodiaquine combination]. [Article in French] Med Mal Infect. 2009;39(1):57-60.

Guo L, Shi Q, Fang JL, Mei N, Ali AA, Lewis SM, Leakey JE, Frankos VH. Review of usnic acid and Usnea barbata toxicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2008;26(4):317-38.

Guzman G, Kallwitz ER, Wojewoda C, Chennuri R, Berkes J, Layden TJ, Cotler SJ. Liver Injury with Features Mimicking Autoimmune Hepatitis following the Use of Black Cohosh. Case Rep Med. 2009;2009:918156.

Haaz S, Fontaine KR, Cutter G, Limdi N, Perumean-Chaney S, Allison DB. Citrus aurantium and synephrine alkaloids in the treatment of overweight and obesity: an update. Obes Rev. 2006;7(1):79-88.

Haimowitz S, Hsieh J, Shcherba M, Averbukh Y. Liver failure after Hydroxycut™ use in a patient with undiagnosed hereditary coproporphyria. J Gen Intern Med. 2015;30(6):856-9.

Hamid S, Rojter S, Vierling J. Protracted cholestatic hepatitis after the use of prostata. Ann Intern Med. 1997;127(2):169-70.

Hamouda C, Amamou M, Thabet H, Yacoub M, Hedhili A, Bescharnia F, Ben Salah N, Zhioua M, Abdelmoumen S, El Mekki Ben Brahim N. Plant poisonings from herbal medication admitted to a Tunisian toxicologic intensive care unit, 1983-1998. Vet Hum Toxicol. 2000;42(3):137-41.

Hamouda C, Hédhili A, Ben Salah N, Zhioua M, Amamou M. A review of acute poisoning from *Atractylis gummifera L*. Vet Hum Toxicol. 2004;46(3):144-6.

Hardeman E, Van Overbeke L, Ilegems S, Ferrante M. Acute hepatitis induced by greater celandine (*Chelidonium majus*). Acta Gastroenterol Belg. 2008;71(2):281-2.

Harvey J, Colin-Jones DG. Mistletoe hepatitis. Br Med J (Clin Res Ed). 1981;282(6259):186-7.

Hayman RM, Dalziel SR. Acute vitamin A toxicity: a report of three paediatric cases. J Paediatr Child Health. 2012;48(3):E98-100.

Horowitz RS, Feldhaus K, Dart RC, Stermitz FR, Beck JJ. The clinical spectrum of Jin Bu Huan toxicity. Arch Intern Med 1996;156:899-903.

Hsu LM, Huang YS, Chang FY, Lee SD. 'Fat burner' herb, usnic acid, induced acute hepatitis in a family. J Gastroenterol Hepatol. 2005;20(7):1138-9.

Hu Z, Yang X, Ho PC, Chan SY, Heng PW, Chan E, Duan W, Koh HL, Zhou S. Herb-drug interactions: a literature review. Drugs. 2005;65(9):1239-82.

Hullar TE, Sapers BL, Ridker PM, Jenkins RL, Huth TS, Farraye FA. Herbal toxicity and fatal hepatic failure. Am J Med. 1999;106(2):267-8.

Humberston CL, Akhtar J, Krenzelok EP. Acute hepatitis induced by kava kava. J Toxicol Clin Toxicol. 2003;41(2):109-13.

Iacovelli R, Palazzo A, Procopio G, Santoni M, Trenta P, De Benedetto A, Mezi S, Cortesi E. Incidence and relative risk of hepatic toxicity in patients treated with anti-

angiogenic tyrosine kinase inhibitors for malignancy. Br J Clin Pharmacol. 2014;77(6):929-38.

Jacobsen C, Semb S, Kromann-Andersen H. [Toxic hepatitis following consumption of the herbal medicinal product *Cascara Sagrada*]. Danish. Ugeskr Laeger 2009; 171:3367-9.

Jeukendrup AE, Randell R. Fat burners: nutrition supplements that increase fat metabolism. Obes Rev. 2011;12(10):841-51.

Jibrin I, Erinle A, Saidi A, Aliyu ZY. Saw palmetto-induced pancreatitis. South Med J. 2006;99(6):611-2.

Jiménez-Encarnación E, Ríos G, Muñoz-Mirabal A, Vilá LM. Euforia-induced acute hepatitis in a patient with scleroderma. BMJ Case Rep. 2012;pii: bcr2012006907.

Jimenez-Saenz M, Martinez-Sanchez Mdel C. Acute hepatitis associated with the use of green tea infusions. J Hepatol. 2006;44(3):616-7.

Jóhannsson M, Ormarsdóttir S, Olafsson S. [Hepatotoxicity associated with the use of Herbalife].

[Article in Icelandic] Laeknabladid. 2010;96(3):167-72.

Johnston DI, Chang A, Viray M, Chatham-Stephens K, He H, Taylor E, Wong LL, Schier J, Martin C², Fabricant D, Salter M, Lewis L, Park SY. Hepatotoxicity

associated with the dietary supplement OxyELITE Pro™ - Hawaii, 2013. Drug Test Anal. 2016;(3-4):319-327.

Jones FJ, Andrews AH. Acute liver injury associated with the herbal supplement hydroxycut in a soldier deployed to Iraq. Am J Gastroenterol. 2007;102(10):2357-8.

Joshi D, Cross TJ, Wong VS. Acute drug induced hepatitis secondary to a weight loss product purchased over the internet. Nutr J. 2007;6:13.

Joy D, Joy J, Duane P. Black cohosh: a cause of abnormal postmenopausal liver function tests. Climacteric. 2008;11(1):84-8.

Jorge OA, Jorge AD. Hepatotoxicity associated with the ingestion of Centella asiatica. Rev Esp Enferm Dig. 2005;97(2):115-24.

Kafrouni MI, Anders RA, Verma S. Hepatotoxicity associated with dietary supplements containing anabolic steroids. Clin Gastroenterol Hepatol. 2007;5(7):809-12.

Kanat O, Ozet A, Ataergin S. Aloe vera-induced acute toxic hepatitis in a healthy young man. Eur J Intern Med 2006; 17:589

Kaplowitz N. Causality assessment versus guilt-by-association in drug hepatotoxicity. Hepatology. 2001;33(1):308-10.

Kaswala D, Shah S, Patel N, Raisoni S, Swaminathan S. Hydroxycut-induced Liver Toxicity.

Ann Med Health Sci Res. 2014;4(1):143-5.

Katz M, Saibil F. Herbal hepatitis: subacute hepatic necrosis secondary to chaparral leaf. J Clin Gastroenterol 1990;12(2):203-6.

Kawaguchi T, Harada M, Arimatsu H, Nagata S, Koga Y, Kuwahara R, Hisamochi A, Hino T, Taniguchi E, Kumemura H, Hanada S, Maeyama M, Koga H, Tomiyasu N, Toyomasu H, Kawaguchi M, Kage M, Kumashiro R, Tanikawa K, Sata M. Severe hepatotoxicity associated with a N-nitrosofenfluramine-containing weight-loss supplement: report of three cases. J Gastroenterol Hepatol. 2004;19(3):349-50.

Kawata K, Takehira Y, Kobayashi Y, Kitagawa M, Yamada M, Hanajima K, Murohisa G, Kawamura M, Iwaoka Y, Wada T, Morita S, Iwaizumi M, Makino S. Three cases of liver injury caused by Sennomotokounou, a Chinese dietary supplement for weight loss. Intern Med. 2003;42(12):1188-92.

Kauma H, Koskela R, Mäkisalo H, Autio-Harmainen H, Lehtola J, Höckerstedt K. Toxic acute hepatitis and hepatic fibrosis after consumption of chaparral tablets. Scand J Gastroenterol. 2004;39(11):1168-71.

Kim SY, Yim HJ, Ahn JH, Kim JH, Kim JN, Yoon I, Kim DI, Lee HS, Lee SW, Choi JH. [Two cases of toxic hepatitis caused by arrowroot juice]. [Article in Korean] Korean J Hepatol. 2009;15(4):504-9.

Kockler DR, McCarthy MW, Lawson CL. Seizure activity and unresponsiveness after hydroxycut ingestion. Pharmacotherapy. 2001;21(5):647-51.

Kowalski TE, Falestiny M, Furth E, Malet PF. Vitamin A hepatotoxicity: a cautionary note regarding 25,000 IU supplements. Am J Med. 1994;97(6):523-8.

Kraft M, Spahn TW, Menzel J, Senninger N, Dietl KH, Herbst H, Domschke W, Lerch MM. Fulminant liver failure after administration of the herbal antidepressant Kava-Kava]. [Article in German] Dtsch Med Wochenschr. 2001;126(36):970-2.

Krishna KP. The efficacy of Ayurvedic treatment for rheumatoid arthritis: Cross-sectional experiential profile of a longitudinal study. Int J Ayurveda Res. 2011;2(1):8-13.

Krishnan PV, Feng ZZ, Gordon SC. Prolonged intrahepatic cholestasis and renal failure secondary to anabolic androgenic steroid-enriched dietary supplements. J Clin Gastroenterol. 2009;43(7):672-5.

Laczek, J.; Duncan, M. Three cases of acute hepatitis in patients taking hydroxycut bodybuilding supplement. Am. J. Gastroenterol. 2008;103:S143–S144.

Lai RT, Wang H, Gui HL, Ye MZ, Dai WJ, Xiang XG, Zhao GD, Wang WJ, Xie Q. [Clinical and pathological features in 138 cases of drug-induced liver injury]. [Article in Chinese] Zhonghua Gan Zang Bing Za Zhi. 2012;20(3):185-9.

Laliberte L, Villeneuve JP. Hepatitis after the use of germander, a herbal remedy. CMAJ 1996;154(11):1689-92.

Lapi F, Gallo E, Giocaliere E, Vietri M, Baronti R, Pieraccini G, Tafi A, Menniti-Ippolito F, Mugelli A, Firenzuoli F, Vannacci A. Acute liver damage due to Serenoa repens: a case report. Br J Clin Pharmacol. 2010;69(5):558-60.

Larrey D. Hepatotoxicity of herbal remedies. J Hepatol. 1997;26 Suppl 1:47-51.

Larrey D, Pageaux GP. Drug-induced acute liver failure. Eur J Gastroenterol Hepatol. 2005;17(2):141-3.

Larrey D, Vial T, Pauwels A, Castot A, Biour M, David M, Michel H. Hepatitis after germander (*Teucrium chamaedrys*) administration: another instance of herbal medicine hepatotoxicity. Ann Intern Med. 1992;117(2):129-32.

Lee J, Lee MS, Nam KW. Acute toxic hepatitis caused by an aloe vera preparation in a young patient: a case report with a literature review. Korean J Gastroenterol. 2014;64(1):54-8.

Lee JS, Cheong HS, Kim LH, Kim JO, Seo DW, Kim YH, Chung MW, Han SY, Shin HD. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J Physiol Pharmacol. 2013;17(6):479-84.

Lee WM. Acute liver failure. Semin Respir Crit Care Med. 2012;33(1):36-45.

Legoux JL, Maitre F, Labarrière D, Gargot D, Festin D, Causse X. [Cytolytic hepatitis and wild Germander: a new case with reintroduction]. [Article in French] Gastroenterol Clin Biol. 1992;16(10):813-5.

Leise MD, Poterucha JJ, Talwalkar JA. Drug-induced liver injury. Mayo Clin Proc. 2014;89(1):95-106.

Lemaigre G, Tebbi Z, Galinsky R, Michowitcz S, Abelanet R. [Fulminating hepatitis caused by glue thistle (*Atractylis glummifera-L.*), poisoning. Anatomo-pathological study of 4 cases]. [Article in French] Nouv Presse Med. 1975 Nov 22;4(40):2565-8.

Levitsky J, Alli TA, Wisecarver J, Sorrell MF. Fulminant liver failure associated with the use of black cohosh. Dig Dis Sci. 2005;50(3):538-9.

Licata A, Macaluso FS, Craxì A. Herbal hepatotoxicity: a hidden epidemic. Intern Emerg Med. 2013;8(1):13-22.

Licata A, Maida M, Cabibi D, Butera G, Macaluso FS, Alessi N, Caruso C, Craxì A, Almasio PL. Clinical features and outcomes of patients with drug-induced autoimmune hepatitis: a retrospective cohort study. Dig Liver Dis. 2014;46(12):1116-20.

Linnebur SA, Rapacchietta OC, Vejar M. Hepatotoxicity associated with Chinese skullcap contained in Move Free Advanced dietary supplement: two case reports and review of the literature. Pharmacotherapy. 2010;30(7):750, 258e-262e.

Lobb A. Hepatoxicity associated with weight-loss supplements: a case for better post-marketing surveillance. World J Gastroenterol. 2009;15(14):1786-7.

Lonie TC. Excess vitamin A as a cause of food poisoning. N Z Med J. 1950;49(274):680-5.

Long J. USPlabs to eliminate aegeline from supplements amid hepatitis probe. 11/7/2013.

http://www.naturalproductsinsider.com/news/2013/11/usplabs-to-eliminate-aegeline-from-supplements-am.aspx. Accessed 12/15/15.

Lontos S, Jones RM, Angus PW, Gow PJ. Acute liver failure associated with the use of herbal preparations containing black cohosh. Med J Aust. 2003;179(7):390-1.

Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, Day CP, Ruiz-Cabello F, Donaldson PT, Stephens C, Pirmohamed M, Romero-Gomez M, Navarro JM, Fontana RJ, Miller M, Groome M, Bondon-Guitton E, Conforti A, Stricker BH, Carvajal A, Ibanez L, Yue QY, Eichelbaum M, Floratos A, Pe'er I, Daly MJ, Goldstein DB, Dillon JF, Nelson MR, Watkins PB, Daly AK; Spanish DILI Registry; EUDRAGENE; DILIN; DILIGEN; International SAEC. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 2011;141(1):338-47.

Luu, L. Liver transplants. Practice essentials.

http://emedicine.medscape.com/article/776313-overview. Accessed 11/23/15.

Lyford CL, Vergara GG, Moeller DD. Hepatic veno-occlusive disease originating in Ecuador. Gastroenterology. 1976;70(1):105-8.

Lynch CR, Folkers ME, Hutson WR. Fulminant hepatic failure associated with the use of black cohosh: a case report. Liver Transpl 2006; 126: 989-92.

MacGregor FB, Abernethy VE, Dahabra S, Cobden I, Hayes PC. Hepatotoxicity of herbal remedies. BMJ. 1989;299(6708):1156-7.

Mahady GB, Low Dog T, Barrett ML, Chavez ML, Gardiner P, Ko R, Marles RJ, Pellicore LS, Giancaspro GI, Sarma DN. United States Pharmacopeia review of the black cohosh case reports of hepatotoxicity. Menopause. 2008;15(4 Pt 1):628-38.

Mahady G, Low Dog T, Sarma DN, Giancaspro GI. Suspected black cohosh hepatotoxicity--causality assessment versus safety signal. Maturitas. 2009 Oct 20;64(2):139-40; author reply 141-2.

Manso G, López-Rivas L, Salgueiro ME, Duque JM, Jimeno FJ, Andrade RJ, Lucena MI. Continuous reporting of new cases in Spain supports the relationship between Herbalife® products and liver injury. Pharmacoepidemiol Drug Saf. 2011;20(10):1080-7.

Marcus DM, Grollman AP. Botanical medicines--the need for new regulations. N Engl J Med. 2002;347(25):2073-6.

Maria VA, Victorino RM. Development and validation of a clinical scale for the diagnosis of drug-induced hepatitis. Hepatology. 1997;26:664–669.

Mattéi A, Rucay P, Samuel D, Feray C, Reynes M, Bismuth H. Liver transplantation for severe acute liver failure after herbal medicine (*Teucrium polium*) administration. J Hepatol. 1995;22(5):597.

Mattei A, Bizollon T, Charles JD, Debat P, Fontanges T, Chevallier M, Trepo C. [Liver damage induced by the ingestion of a product of phytotherapy containing wild germander. Four cases]. [Article in French] Gastroenterol Clin Biol. 1992;16(10):798-800.

Mazokopakis E, Lazaridou S, Tzardi M, Mixaki J, Diamantis I, Ganotakis E. Acute cholestatic hepatitis caused by *Teucrium polium L*. Phytomedicine. 2004;11(1):83-4.

Mazzanti G, Di Sotto A, Vitalone A. Hepatotoxicity of green tea: an update. Arch Toxicol. 2015;89(8):1175-91.

McDonnell WM, Bhattacharya R, Halldorson JB. Fulminant hepatic failure after use of the herbal weight-loss supplement exilis. Ann Intern Med. 2009;151(9):673-4.

McGuffin M. Illegally marketed drug ingredients are not dietary supplements. JAMA Intern Med. 2013;173(22):2090-1.

Mengs U, Schwars T, Bulitta M, Weber K. Antitumoral effects of an intravesically applied aqueous mistletoe extract on urinary bladder carcinoma MB49 in mice. Anti cancer Res 2000;20(5B):3565-8.

Mengual-Moreno E, Lizarzábal-García M, Ruiz-Soler M, Silva-Suarez N, Andrade-Bellido R, Lucena-González M, Bessone F, Hernández N, Sánchez A, Medina-Cáliz I. [Case reports of drug-induced liver injury in a reference hospital of Zulia state, Venezuela]. [Article in Spanish] Invest Clin. 2015;56(1):3-12.

Miksad R, de Lédinghen V, McDougall C, Fiel I, Rosenberg H. Hepatic hydrothorax associated with vitamin a toxicity. J Clin Gastroenterol. 2002;34(3):275-9.

Millonig G, Stadlmann S, Vogel W. Herbal hepatotoxicity: acute hepatitis caused by a Noni preparation (Morinda citrifolia). Eur J Gastroenterol Hepatol. 2005;17(4):445-7.

Mimidis KP, Papadopoulos VP, Baltatzidis G, Giatromanolaki A, Sivridis E, Kartalis G. Severe acute cholestasis caused by *Teucrium polium*. J Gastrointestin Liver Dis. 2009;18(3):387-8.

Minuk GY, Kelly JK, Hwang WS. Vitamin A hepatotoxicity in multiple family members. Hepatology. 1988;8(2):272-5.

Molinari M, Watt KD, Kruszyna T, Nelson R, Walsh M, Huang WY, Nashan B, Peltekian K. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transpl. 2006;12(12):1892-5.

Moro PA, Cassetti F, Giugliano G, Falce MT, Mazzanti G, Menniti-Ippolito F, Raschetti R, Santuccio C. Hepatitis from Greater celandine (*Chelidonium majus L.):* review of literature and report of a new case. J Ethnopharmacol. 2009;124(2):328-32.

Mostefa-Kara N, Pauwels A; Pines E, Biour M, et al. Fatal hepatitis after herbal tea. Lancet 1992;340(8820):674.

Mounajjed T, Graham RP, Sanderson SO, Smyrk TC. Clinical associations of hepatic stellate cell (HSC) hyperplasia. Virchows Arch. 2014;465(1):57-65

Mrzljak A, Kosuta I, Skrtic A, Kanizaj TF, Vrhovac R. Drug-induced liver injury associated with noni (*Morinda citrifolia*) juice and phenobarbital. Case Rep Gastroenterol 2013;7:19-24.

Munoz SJ, Fariello R, Maddrey WC. Submassive hepatic necrosis associated with the use of progabide: a GABA receptor agonist. Dig Dis Sci. 1988;33(3):375-80.

Muquet Adnan M, Khan M, Hashmi S, Hamza M, AbdulMujeeb S, Amer S. Black cohosh and liver toxicity: is there a relationship? Case Rep Gastrointest Med. 2014:2014:860614.

Nadir A, Agrawal S, King PD, Marshall JB. Acute hepatitis associated with the use of a Chinese herbal product, ma-huang. Am J Gastroenterol. 1996;91(7):1436-8.

Nadir A, Reddy D, Van Thiel DH. Cascara sagrada-induced intrahepatic cholestasis causing portal hypertension: case report and review of herbal hepatotoxicity. Am J Gastroenterol 2000;95(12):3634-7.

Nakasone ES, Tokeshi J. A Serendipitous Find: A Case of Cholangiocarcinoma Identified Incidentally After Acute Liver Injury Due to Cascara sagrada Ingestion. Hawaii J Med Public Health. 2015;74(6):200-2.

Nam SW, Baek JT, Lee DS, Kang SB, Ahn BM, Chung KW. A case of acute cholestatic hepatitis associated with the seeds of Psoralea corylifolia (Boh-Gol-Zhee). Clin Toxicol (Phila). 2005;43(6):589-91.

Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, Janecek E, Domecq C, Greenblatt DJ. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981;30(2):239-45. (a)

Navarro VJ, Bonkovsky HL, Hwang SI, Vega M, Barnhart H, Serrano J. Catechins in dietary supplements and hepatotoxicity. Dig Dis Sci. 2013b;58(9):2682-90. (b)

Navarro VJ, Lucena MI. Hepatotoxicity induced by herbal and dietary supplements. Semin Liver Dis. 2014;34(2):172-93. (a)

Navarro VJ, Barnhart H, Bonkovsky HL, Davern T, Fontana RJ, Grant L, Reddy KR, Seeff LB, Serrano J, Sherker AH, Stolz A, Talwalkar J, Vega M, Vuppalanchi R.

Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network. Hepatology. 2014;60(4):1399-408. (b)

Navarro VJ, Seeff LB. Liver injury induced by herbal complementary and alternative medicine. Clin Liver Dis. 2013a;17(4):715-35.

Neergheen-Bhujun VS. Underestimating the toxicological challenges associated with the use of herbal medicinal products in developing countries. Biomed Res Int. 2013;2013:804086.

Neff GW, Reddy KR, Durazo FA, Meyer D, Marrero R, Kaplowitz N. Severe hepatotoxicity associated with the use of weight loss diet supplements containing ma huang or usnic acid. J Hepatol. 2004;41(6):1062-4.

Nencini C, Galluzzi P, Pippi F, Menchiari A, Micheli L. Hepatotoxicity of *Teucrium chamaedrys L*. decoction: role of difference in the harvesting area and preparation method. Indian J Pharmacol. 2014;46(2):181-4.

Ng V, Tran TT, Sundaram V. An unexpected cause of an infiltrative liver mass. Gastroenterology. 2014;147(2):e12-3.

Nisbet BC, O'Connor RE. Black cohosh-induced hepatitis. Del Med J. 2007;79(11):441-4.

Nortadas R, Barata J. Fulminant hepatitis during self-medication with conjugated linoleic acid.

Ann Hepatol. 2012;11(2):265-7.

Nowack R, Nowak B. Herbal teas interfere with cyclosporin levels in renal transplant patients. Nephrol Dial Transplant. 2005;20(11):2554-6.

O'Donnell J. Polar hysteria: an expression of hypervitaminosis A. Am J Ther. 2004;11(6):507-16.

O'hara M, Kiefer D, Farrell K, Kemper K et al. A review of 12 commonly used medicinal herbs. Arch Fam Med 1998;7(6):523-536.

Ortiz Cansado A, Crespo Valadés E, Morales Blanco P, Sáenz de Santamaría J, González Campillejo JM, Ruiz Téllez T. [Veno-occlusive liver disease due to intake of Senecio vulgaris tea]. [Article in Spanish] Gastroenterol Hepatol. 1995;18(8):413-6.

Ossendza RA, Grandval P, Chinoune F, Rocher F, Chapel F, Bernardini D. [Acute cholestatic hepatitis due to glucosamine forte].[Article in French]. Gastroenterol Clin Biol. 2007;31(4):449-50.

Patel DN, Low WL, Tan LL, Tan MM, Zhang Q, Low MY, Chan CL, Koh HL. Adverse events associated with the use of complementary medicine and health supplements: an analysis of reports in the Singapore Pharmacovigilance database from 1998 to 2009. Clin Toxicol (Phila). 2012;50(6):481-9.

Patel SS, Beer S, Kearney DL, Phillips G, Carter BA. Green tea extract: a potential cause of acute liver failure. World Gastroenterol. 2013;19(31):5174-7.

Pauwels A, Thierman-Duffaud D, Azanowsky JM, Loiseau D, Biour M, Levy VG. [Acute hepatitis caused by wild germander. Hepatotoxicity of herbal remedies. Two cases]. [Article in French] Gastroenterol Clin Biol. 1992;16(1):92-5.

PDR Staff. Physicians' Desk Reference, 70th Edition. PDR Network, 2016.

Pedrós C, Cereza G, García N, Laporte JR. [Liver toxicity of *Camellia sinensis* dried etanolic extract]. [Article in Spanish] Med Clin (Barc). 2003;121(15):598-9.

Pérez Alvarez J, Sáez-Royuela F, Gento Peña E, López Morante A, Velasco Osés A, Martín Lorente J. [Acute hepatitis due to ingestion of *Teucrium chamaedrys* infusions]. [Article in Spanish] Gastroenterol Hepatol. 2001;24(5):240-3.

Picciotto A, Campo N, Brizzolara R, Giusto R, et al. Chronic Hepatitis induced by Jin Bu Huan. J Hepatol 1998;28(1):156-7.

Pierard S, Coche JC, Lanthier P, Dekoninck X, Lanthier N, Rahier J, Geubel AP. Severe hepatitis associated with the use of black cohosh: a report of two cases and an advice for caution. Eur J Gastroenterol Hepatol. 2009;21(8):941-5.

Pillukat MH, Bester C, Hensel A, Lechtenberg M, Petereit F, Beckebaum S, Müller KM, Schmidt HH. Concentrated green tea extract induces severe acute hepatitis in a

63-year-old woman--a case report with pharmaceutical analysis. J Ethnopharmacol. 2014;155(1):165-70.

Pittler MH, Ernst E. Systematic review: hepatotoxic events associated with herbal medicinal products.

Aliment Pharmacol Ther. 2003;18(5):451-71.

Polymeros D, Kamberoglou D, Tzias V. Acute cholestatic hepatitis caused by *Teucrium polium* (golden germander) with transient appearance of antimitochondrial antibody. J Clin Gastroenterol. 2002;34(1):100-1.

Poon WT, Chau TL, Lai CK, Tse KY, Chan YC, Leung KS, Chan YW. Hepatitis induced by *Teucrium viscidum*. Clin Toxicol (Phila). 2008;46(9):819-22.

Posadzki P, Watson L, Ernst E. Herb-drug interactions: an overview of systematic reviews. Br J Clin Pharmacol. 2013;75(3):603-18.

Rabe C, Musch A, Schirmacher P, Kruis W, Hoffmann R. Acute hepatitis induced by an aloe vera preparation: A case report. World J Gastroenterol 2005; 11: 303-4.

Rader JI, Calvert RJ, Hathcock JN. Hepatic toxicity of unmodified and time-release preparations of niacin. Am J Med. 1992;92(1):77-81.

Rahimi R, Abdollahi M. An update on the ability of St. John's wort to affect the metabolism of other drugs. Expert Opin Drug Metab Toxicol. 2012;8(6):691-708.

Rahnema CD, Crosnoe LE, Kim ED. Designer steroids - over-the-counter supplements and their androgenic component: review of an increasing problem. Andrology. 2015;3(2):150-5.

Ramanathan VS, Hensley G, French S, Eysselein V, Chung D, Reicher S, Pham B. Hypervitaminosis A inducing intra-hepatic cholestasis--a rare case report. Exp Mol Pathol. 2010;88(2):324-5.

Ramanathan VS, Mitropoulos E, Shlopov B, Eysselein V, Chung D, Reicher S, Pham BV. An Enzyte'ing' case of acute hepatitis. J Clin Gastroenterol. 2011;45(9):834-5.

Ramos R, Mascarenhas J, Duarte P, Vicente C, Casteleiro C. Conjugated linoleic acid-induced toxic hepatitis: first case report. Dig Dis Sci. 2009;54(5):1141-3.

Raschi E, De Ponti F. Drug- and herb-induced liver injury: Progress, current challenges and emerging signals of post-marketing risk. World J Hepatol. 2015;7(13):1761-71.

Rashid NN, Grant J. Hydroxycut hepatotoxicity. Med J Aust. 2010;192(3):173-4.

Ridker PM, Ohkuma S, McDermott WV, Trey C, Huxtable RJ. Hepatic venocclusive disease associated with the consumption of pyrrolizidine-containing dietary supplements. Gastroenterology. 1985;88(4):1050-4.

Rifai K, Flemming P, Manns MP, Trautwein C. [Severe drug hepatitis caused by *Chelidonium*].[Article in German] Internist (Berl). 2006;47(7):749-51.

Roeder E. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 2000; 55(10): 711-26.

Rohilla R, Garg T, Goyal AK, Rath G. Herbal and polymeric approaches for liver-targeting drug delivery: novel strategies and their significance. Drug Deliv. 2016;23(5):1645-61.

Roselle H, Ekatan A, Tzeng J, Sapienza M, Kocher J. Symptomatic hepatitis associated with the use of herbal red yeast rice. Ann Intern Med. 2008;149(7):516-7.

Roytman MM, Pörzgen P, Lee CL, Huddleston L, Kuo TT, Bryant-Greenwood P, Wong LL, Tsai N. Outbreak of severe hepatitis linked to weight-loss supplement OxyELITE Pro. Am J Gastroenterol. 2014;109(8):1296-8.

Russmann S, Lauterburg BH, Helbling A. Kava hepatotoxicity. Ann Intern Med. 2001;135(1):68-9.

Russo MW, Galanko JA, Shrestha R, Fried MW, Watkins P. Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transpl. 2004;10(8):1018-23.

Safi KH, Filbrun AG, Nasr SZ. Hypervitaminosis A causing hypercalcemia in cystic fibrosis. Case report and focused review. Ann Am Thorac Soc. 2014;11(8):1244-7.

Sanchez W, Maple JT, Burgart LJ, Kamath PS. Severe hepatotoxicity associated with use of a dietary supplement containing usnic acid. Mayo Clin Proc. 2006;81(4):541-4.

Sansone RA, Sansone LA. Carrot man: a case of excessive beta-carotene ingestion. Int J Eat Disord. 2012;45(6):816-8.

Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, Marles RJ, Pellicore LS, Giancaspro GI, Low Dog T. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469-84.

Savvidou S, Goulis J, Giavazis I, Patsiaoura K, Hytiroglou P, Arvanitakis C. Herbinduced hepatitis by *Teucrium polium L*.: report of two cases and review of the literature. Eur J Gastroenterol Hepatol. 2007;19(6):507-11.

Schiano TD. Hepatotoxicity and complementary and alternative medicines. Clin Liver Dis. 2003;7(2):453-73.

Schoepfer AM, Engel A, Fattinger K, Marbet UA, Criblez D, Reichen J, Zimmermann A, Oneta CM. Herbal does not mean innocuous: ten cases of severe hepatotoxicity associated with dietary supplements from Herbalife products. J Hepatol. 2007;47(4):521-6.

Scott BA, Troppmann C, Rossaro L. Hepatotoxicity associated with a dietary supplement. Ann Intern Med. 2003g;138(8):W-W49.

Seeff LB, Bonkovsky HL, Navarro VJ, Wang G. Herbal products and the liver: a review of adverse effects and mechanisms. Gastroenterology. 2015;148(3):517-532

Semwal RB, Semwal DK, Vermaak I, Viljoen A. A comprehensive scientific overview of Garcinia cambogia. Fitoterapia. 2015;102:134-48.

Seybold U, Landauer N, Hillebrand S, Goebel FD. Senna-induced hepatitis in a poor metabolizer.

Ann Intern Med. 2004;141(8):650-1.

Sezer RG, Bozaykut A. Pediatric hepatotoxicity associated with polygermander (*teucrium polium*). Clin Toxicol (Phila). 2012;50(2):153.

Shad JA, Chinn CG, Brann OS. Acute hepatitis after ingestion of herbs. South Med J 1999;92(11):1095-97.

Shah NL, Zacharias I, Khettry U, Afdhal N, Gordon FD. Methasteron-associated cholestatic liver injury: clinicopathologic findings in 5 cases. Clin Gastroenterol Hepatol. 2008;6(2):255-8.

Sharma T, Wong L, Tsai N, Wong RD. Hydroxycut(®) (herbal weight loss supplement) induced hepatotoxicity: a case report and review of literature. Hawaii Med J. 2010;69(8):188-90.

Sheikh NM, Philen RM, Love LA. Chaparral-associated hepatotoxicity. Arch Intern Med 1997;157(8):913-9.

Sheth A, Khurana R, Khurana V. Potential liver damage associated with over-the-counter vitamin supplements. J Am Diet Assoc. 2008;108(9):1536-7.

Shim M, Saab S. Severe hepatotoxicity due to Hydroxycut: a case report. Dig Dis Sci. 2009;54(2):406-8.

Shipley A, Berkowitz B, Rivero C. Designer steroids: Hide and Seek. The Washington Post. 10/18/2005. http://www.washingtonpost.com/wp-dyn/content/graphic/2005/10/18/GR2005101800648.html. Accessed 11/30/15.

Skoulidis F, Alexander GJ, Davies SE. Ma huang associated acute liver failure requiring liver transplantation. Eur J Gastroenterol Hepatol. 2005;17(5):581-4.

Smith A, Dillon J. Acute liver injury associated with the use of herbal preparations containing glucosamine: three case studies. BMJ Case Rep. 2009;2009. pii: bcr02.2009.1603.

Smith BC, Desmond PV. Acute hepatitis induced by ingestion of the herbal medication chaparral. Aust N Z J Med. 1993;23(5):526.

Soni MG, Burdock GA, Preuss HG, Stohs SJ, Ohia SE, Bagchi D. Safety assessment of (-)-hydroxycitric acid and Super CitriMax, a novel calcium/potassium salt. Food Chem Toxicol. 2004;42(9):1513-29.

Sonmez A, Yilmaz MI, Mas R, Ozcan A, Celasun B, Dogru T, Taslipinar A, Kocar IH. Subacute cholestatic hepatitis likely related to the use of senna for chronic constipation. Acta Gastroenterol Belg. 2005;68(3):385-7.

Stadlbauer V, Weiss S, Payer F, Stauber RE. Herbal does not at all mean innocuous: the sixth case of hepatotoxicity associated with morinda citrifolia (noni). Am J Gastroenterol. 2008;103(9):2406-7.

Stadlbauer V, Fickert P, Lackner C, Schmerlaib J, Krisper P, Trauner M, Stauber RE. Hepatotoxicity of NONI juice: report of two cases. World J Gastroenterol. 2005;11(30):4758-60.

Starakis I, Siagris D, Leonidou L, Mazokopakis E, Tsamandas A, Karatza C. Hepatitis caused by the herbal remedy *Teucrium polium L*. Eur J Gastroenterol Hepatol. 2006;18(6):681-3.

Stedman C. Herbal toxicity. Semin Liver Dis 2002;22(2):195-206.

Steenkamp V, Stewart MJ, Zuckerman M. Detection of poisoning by Impila (*Callilepis laureola*) in a mother and child. Hum Exp Toxicol. 1999;18(10):594-7.

Stephens C, López-Nevot MÁ, Ruiz-Cabello F, Ulzurrun E, Soriano G, Romero-Gómez M, Moreno-Casares A, Lucena MI, Andrade RJ. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One. 2013 9;8(7):e68111.

Stevens T, Qadri A, Zein NN. Two patients with acute liver injury associated with use of the herbal weight-loss supplement hydroxycut. Ann Intern Med. 2005;142(6):477-8.

Stickel F, Baumüller HM, Seitz K, Vasilakis D, Seitz G, Seitz HK, Schuppan D. Hepatitis induced by Kava (*Piper methysticum rhizoma*). J Hepatol. 2003;39(1):62-7.

Stickel F, Droz S, Patsenker E, Bögli-Stuber K, Aebi B, Leib SL. Severe hepatotoxicity following ingestion of Herbalife nutritional supplements contaminated with Bacillus subtilis. J Hepatol. 2009;50(1):111-7.

Stickel F, Kessebohm K, Weimann R, Seitz HK. Review of liver injury associated with dietary supplements. Liver Int. 2011;31(5):595-605.

Stickel F, Patsenker E, Schuppan D. Herbal hepatotoxicity. J Hepatol. 2005;43(5):901-10.

Stickel F, Pöschl G, Seitz HK, Waldherr R, Hahn EG, Schuppan D. Acute hepatitis induced by Greater Celandine (Chelidonium majus). Scand J Gastroenterol. 2003;38(5):565-8.

Stickel F, Shouval D. Hepatotoxicity of herbal and dietary supplements: an update. Arch Toxicol. 2015;89(6):851-65.

Stillman AE, Huxtable RJ, Fox D, Hart M, Bergeson P. Pyrrolizidine (*Senecio*) poisoning in Arizona: severe liver damage due to herbal teas. Ariz Med. 1977;34(8):545-6.

Stohs SJ, Ray SD. A review and evaluation of the efficacy and safety of Cissus quadrangularis extracts. Phytother Res. 2013;27(8):1107-14.

Stohs SJ, Preuss HG, Ohia SE, Kaats GR, Keen CL, Williams LD, Burdock GA. No evidence demonstrating hepatotoxicity associated with hydroxycitric acid. World J Gastroenterol. 2009;15(32):4087-9.

Strahl S, Ehret V, Dahm HH, Maier KP. [Necrotizing hepatitis after taking herbal remedies]. [Article in German] Dtsch Med Wochenschr. 1998;123(47):1410-4.

Strasser M, Stadlmayr A, Haufe H, Stickel F, Ferenci P, Patsch W, Feldman A, Weghuber D, Datz C, Aigner E. Natural course of subjects with elevated liver tests and normal liver histology. Liver Int. 2015 Aug 10. [Epub ahead of print]

Suk KT, Kim DJ, Kim CH, Park SH, et al. A prospective nationwide study of druginduced liver injury in Korea. Am J Gastroneterol 2012;107:1380-1387.

Sullivan JB Jr, Rumack BH, Thomas H Jr, Peterson RG, Bryson P. Pennyroyal oil poisoning and hepatotoxicity. JAMA 1979;242:2873-4.

Takegoshi K, Tohyama T, Okuda K, Suzuki K, Ohta G. A case of Venoplant-induced hepatic injury.

Gastroenterol Jpn. 1986;21(1):62-5.

Takikawa H, Takamori Y, Kumagi T, Onji M, Watanabe M, Shibuya A, Hisamochi A, Kumashiro R, Ito T, Mitsumoto Y, Nakamura A, Sakaguchi T. Assessment of 287

Japanese cases of drug induced liver injury by the diagnostic scale of the International Consensus Meeting. Hepatol Res. 2003;27(3):192-195.

Tandon BN, Tandon HD, Tandon RK, Narndranathan M, Joshi YK. An epidemic of veno-occlusive disease of liver in central India. Lancet. 1976;2(7980):271-2.

Teschke R. Black cohosh and suspected hepatotoxicity: inconsistencies, confounding variables, and prospective use of a diagnostic causality algorithm. A critical review. Menopause. 2010a;17(2):426-40. (a)

Teschke R. Kava hepatotoxicity--a clinical review. Ann Hepatol. 2010;9(3):251-65. (b)

Teschke R. Traditional Chinese Medicine Induced Liver Injury. J Clin Transl Hepatol. 2014;2(2):80-94.

Teschke R, Schulze J. Suspected herbal hepatotoxicity: requirements for appropriate causality assessment by the US Pharmacopeia. Drug Saf. 2012;35(12):1091-7. (a)

Teschke R, Frenzel C, Schulze J, Eickhoff A. Herbal hepatotoxicity: challenges and pitfalls of causality assessment methods. World J Gastroenterol. 2013;19(19):2864-82. (a)

Teschke R, Frenzel C, Schulze J, Schwarzenboeck A, Eickhoff A. Herbalife hepatotoxicity: Evaluation of cases with positive reexposure tests. World J Hepatol. 2013;5(7):353-63. (b)

Teschke R, Schulze J, Schwarzenboeck A, Eickhoff A, Frenzel C. Herbal hepatotoxicity: suspected cases assessed for alternative causes. Eur J Gastroenterol Hepatol. 2013;25(9):1093-8. (c)

Teschke R, Wolff A, Frenzel C, Schulze J, Eickhoff A. Herbal hepatotoxicity: a tabular compilation of reported cases. Liver Int. 2012;32(10):1543-56. (b)

Teschke R, Bahre R. Severe hepatotoxicity by Indian Ayurvedic herbal products: a structured causality assessment. Ann Hepatol. 2009;8(3):258-66.

Teschke R, Schwarzenboeck A, Hennermann KH. Causality assessment in hepatotoxicity by drugs and dietary supplements. Br J Clin Pharmacol. 2008;66(6):758-66.

Theiler R, Wirth HP, Flury R, Hanck A, Michel BA. [Chronic vitamin A poisoning with musculoskeletal symptoms and morphological changes of the liver: a case report]. [Article in German] Schweiz Med Wochenschr. 1993;123(51-52):2405-12.

Thomasson HR, Crabb DW, Edenberg HJ, Li TK. Alcohol and aldehyde dehydrogenase polymorphisms and alcoholism. Behav Genet. 1993;23(2):131-6.

Urban TJ, Daly AK, Aithal GP. Genetic basis of drug-induced liver injury: present and future.

Semin Liver Dis. 2014;34(2):123-33.

van de Meerendonk HW¹, van Hunsel FP, van der Wiel HE. [Autoimmune hepatitis induced by *Actaea racemosa*. Side affects of an herb extract]. [Article in Dutch] Ned Tijdschr Geneeskd. 2009;153(6):246-9.

Vanderperren B, Rizzo M, Angenot L, Haufroid V, Jadoul M, Hantson P. Acute liver failure with renal impairment related to the abuse of senna anthraquinone glycosides. Ann Pharmacother. 2005;39(7-8):1353-7.

Vannacci A, Lapi F, Gallo E, Vietri M, Toti M, Menniti-Ippolito F, Raschetti R, Firenzuoli F, Mugelli A. A case of hepatitis associated with long-term use of *Cimicifuga racemosa*. Altern Ther Health Med. 2009;15(3):62-3.

Vassiliadis T, Anagnostis P, Patsiaoura K, Giouleme O, Katsinelos P, Mpoumponaris A, Eugenidis N. Valeriana hepatotoxicity. Sleep Med. 2009;10(8):935.

Vilar JH, García M, Cabrera P. [Veno-occlusive liver disease induced by *Senecio vulgaris* toxicity]. [Article in Spanish] Gastroenterol Hepatol. 2000;23(6):285-6.

Vivekanandarajah A, Ni S, Waked A. Acute hepatitis in a woman following excessive ingestion of an energy drink: a case report. J Med Case Rep. 2011;22;5:227.

Voican CS, Corruble E, Naveau S, Perlemuter G. Antidepressant-induced liver injury: a review for clinicians. Am J Psychiatry. 2014;171(4):404-15.

Vuppalanchi R, Navarro V, Vega M, Bonkovsky HL, Seeff L, Serrano J; Drug-Induced Liver Injury Network (DILIN). Herbal dietary supplement associated hepatotoxicity: an upcoming workshop and need for research. Gastroenterology. 2015;148(3):480-2.

Wainwright J, Sconland MM, Candy HA. Toxicity of *Callilepis laureola*. S Afr Med J 1977; 52(8): 313-5.

Watson AR, Coovadia HM, Bhoola KD. The clinical syndrome of Impila (*Callilepis laureola*) poisoning in children. S Afr Med J 1979;55(8):290-2.

Weinstein DH, Twaddell WS, Raufman JP, Philosophe B, Mindikoglu AL.

SlimQuick™ - associated hepatotoxicity in a woman with alpha-1 antitrypsin heterozygosity. World J Hepatol. 2012 27;4(4):154-7.

West, B.J., Jensen, C.J., Westendorf, J., and White, L.D. A safety review of noni fruit juice. *J Food Sci* 2007;71(8):R100-R106.

West, B.J., Jensen, C.J., and Westendorf, J. Noni juice is not hepatotoxic. *World J Gastroenterol* 2006;12(22):3616-9.

Weston CF, Cooper BT, Davies JD, Levine DF. Veno-occlusive disease of the liver secondary to ingestion of comfrey. Br Med J (Clin Res Ed). 1987;295(6591):183.

Whiting PW, Clouston A, Kerlin P.Black cohosh and other herbal remedies associated with acute hepatitis. Med J Aust. 2002;177(8):440-3.

Whitsett M, Marzio DH, Rossi S. SlimQuick™-Associated Hepatotoxicity Resulting in Fulminant Liver Failure and Orthotopic Liver Transplantation. ACG Case Rep J. 2014;1(4):220-2.

Woolf GM, Petrovic LM, Rojter SE, Wainwright S, et al. Acute hepatitis associated with the Chinese herbal product jin bu huan. Ann Intern Med 1994;121(10):729-35.

World Health Organization (WHO). The use of the WHO-UMC system for standardized case causality assessment. http://who-umc.org/Graphics/24734.pdf. Accessed 9/8/15.

Wysowski DK, Swartz L. Adverse drug event surveillance and drug withdrawals in the United States, 1969-2002: the importance of reporting suspected reactions. Arch Intern Med. 2005;165(12):1363-9.

Yang HN, Kim DJ, Kim YM, Kim BH, Sohn KM, Choi MJ, Choi YH. Aloe-induced toxic hepatitis. J Korean Med Sci 2010; 25: 492-5.

Yang L, Aronsohn A, Hart J, Jensen D. Herbal hepatoxicity from Chinese skullcap: A case report. World J Hepatol. 2012;4(7):231-3.

Yang XX, Hu ZP, Duan W, Zhu YZ, Zhou SF. Drug-herb interactions: eliminating toxicity with hard drug design. Curr Pharm Des. 2006;12(35):4649-64.

Yeong ML, Swinburn B, Kennedy M, Nicholson G. Hepatic veno-occlusive disease associated with comfrey ingestion. J Gastroenterol Hepatol 1990;5(2):211-4.

Yuan L, Kaplowitz N. Mechanisms of drug-induced liver injury. Clin Liver Dis. 2013;17(4):507-18,

Yu K, Geng X, Chen M, Zhang J, Wang B, Ilic K, Tong W. High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metab Dispos. 2014 Apr;42(4):744-50

Yu EL, Sivagnanam M, Ellis L, et al. Acute hepatotoxicity after ingestion of Morinda citrifolia (noni berry) juice in a 14-year-old boy. J Pediatr Gastroenterol Nutr 2011; 52:222–224.

Yuce B, Gulberg V, Diebold J, Gerbes AL. Hepatitis induced by Noni juice from Morinda citrifolia: a rare cause of hepatotoxicity or the tip of the iceberg? Digestion. 2006;73(2-3):167-70.

Zheng EX, Navarro VJ. Liver Injury from Herbal, Dietary, and Weight Loss Supplements: a Review.

J Clin Transl Hepatol. 2015;3(2):93-8.

Zhou Y, Yang L, Liao Z, He X, Zhou Y, Guo H. Epidemiology of drug-induced liver injury in China: a systematic analysis of the Chinese literature including 21,789 patients. Eur J Gastroenterol Hepatol. 2013;25(7):825-9.

Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687-710.

Table 1. Selected liver injuries briefly defined

Type of Liver Injury	Definition
Elevated liver enzymes	Two- or three-fold + or greater increase in*
Elevated bilirubin	Alkaline transferase (ALT);
	Alkaline phosphatase (ALP)
	Two-fold or greater increase in:
	Bilirubin in the presence of increased ALT and ALP
Jaundice	Yellowish pigmentation of the skin and whites of eyes along
	with possible darker urine (due to high bilirubin levels)
Hepatitis (acute or chronic)	Inflammation of the liver
Cholestasis	Impaired bile flow
Steatosis (Fatty liver disease)	Excessive accumulation of fat in the liver cells
Fibrosis	Excessive connective tissues builds up in the liver
Veno-occlusive disease	Connective tissue and collagen block hepatic veins
Cirrhosis	Liver tissue becomes scarred and loses function
Necrosis	Death of liver tissue

Acute liver failure	Rapid (1-12 weeks) liver dysfunction in a patient without prior
	known liver disease
Chronic liver disease or failure	Liver disease for over 6 months resulting in gradual loss of
	liver function to the point of failure
Hepatic encephalopathy	Liver failure contributing to confusion, altered consciousness
	level, and coma
Liver transplant	Diseased liver (or portion) is replaced with a healthy liver (or
	portion). Follows acute liver failure or end-stage liver disease.
Death (CDC, 2013)	18,146 due to alcoholic liver disease**
	18,281 not due to alcohol (chronic liver disease and cirrhosis)

FDA-b, 2009; *Teschke, 2013-a, and **http://www.cdc.gov/nchs/fastats/liver-disease.htm (2013)

See American College of Gastroenterology for the latest diagnostic recommendations

Table 2. Most common causes of liver transplant in the United States

Medical Condition	Percent	Estimated number of 6,000
		liver transplants a year
Hepatitis C virus	30	1,800
Alcoholic liver disease	18	1,080
Idiopathic/autoimmune	12	720
Primary biliary cirrhosis	10	600
Primary sclerosing cholangitis	8	480
Acute liver failure	7	420
Hepatitis B virus	6	360
Metabolic liver disease	3	180
(inborn errors of metabolism)		
Cancer	3	180
Other	3	180

Source: Luu, 2014

Table 3. Herb Induced Liver Injuries Reported in PubMed*

Common	Scientific	Suggested Active	Uses	Herbal Induced	References
Name	Name	Compounds		Liver Injury (HILI)	
Aloe Vera	Aloe barbadensis	Anthraquinones	Laxative, gastric	Elevated ALT and AST,	Belfrage, 2008
			problems, aging, general	jaundice, acute hepatitis	Bottenberg, 2007
			well being		Curciarello, 2008
					Kanat, 2006
			4		Lee, 2014
					Rabe, 2005
					Yang, 2010
Arrowroot Juice	Maranta	Unknown	Treating diarrhea (10 ml	Hepatitis in two cases in	Kim, 2009
	arundinacea, but		3x/day) (Cooke, 2000)	Korea (source of	
	several plants			arrowroot may be	
	serve as sources			different, possibly kuzu)	
	including <i>Zamia</i>				

	integrifolia, -				
	Pueraria lobata				
	(kuzu in Japan)				
Black Cohosh	Actaea racemosa	Triterpenes	Menopause, hot flashes	Acute hepatitis,	Chow, 2008
		glycosides and	,	necrosis, fibrosis,	Cohen,2004
		polyphenols		encephalopathy, liver	Enbom, 2014
			45	transplant and death	Guzman, 209
					Joy, 2008
				The Dietary Supplement	Levitsky, 2005
				Information Expert	Lontos, 2003
				Committee determined	Lynch, 2006
				that black cohosh	Muqeet, 2014
			, 7	products should be	Nisbet, 2007
				labeled to include a	Pierard,2009
				cautionary statement	Van de
				(Mahady, 2008)	Meerendonk, 2009
		<i>y</i>			Vannacci, 2009
					Whiting, 2002

Black Cohosh Note: In 2008, a significant number of hepatotoxic cases (approximately 30) came to the attention of the Dietary Supplement Information Expert Committee of the US Pharmacopeia's Council of Experts. Their review stated that black cohosh products should be sold with a cautionary statement indicating that hepatotoxicity is possible (Mahady, 2008). A previous 2002 review required no such statement showing that sometimes a significant period of time must pass for a sufficient number of cases to surface before action is taken. Thirteen additional cases were reported in 2009 (Mahady, 2009), and another review is provided by Teschke, 2010a.

Cascara	Cascara sagrada	Anthracene	Laxative	Fibrosis, hepatitis	Jacobsen, 2009
		glycoside			Nadir, 2000
Chaparral	Larrea divaricata	Nordihydroguaiaretic	Cancer (melanoma),	Hepatitis, liver toxicity,	Alderman, 1994
		acid (NDGA)	bronchitis, colds,	liver failure. 13 cases of	Batchelor, 1995
			rheumatic pain, stomach	hepatitis reported to	CDC, 1992
			pain, and chicken pox.	FDA between1992-94.	Gordon, 1995
			(Removed from the	Katz, 1990
				GRAS list in 1970.	Kauma, 2004
		× 0 '			Shad, 1999
					Sheikh, 1997
		× '			Smith, 1993

Chinese Herbs (single herbs only as herb combinations were excluded)

Fo-ti	Polygonum	Anthraquinones	Hair growth, gray hair	18 cases of jaundice.	Banarova, 2012
(called Shou Wu	Multiflorum		prevention, restore	Hepatitis	Dong, 2013
Pian when			youthful vigor, prostatitis,	(numerous cases of	
combined with			constipation, erectile	hepatitis reported with	
other herbs)			dysfunction, cancer.	Shou Wu Pian)	
Celandine	Chelidonium	Isoquinoline	Externally for skin	Cholestatic hepatitis	Crijns, 2002
(Greater	majus L.	alkaloids	conditions (warts,		Hardeman, 2012
celandine)			eczema); internally for		Moro, 2009
			liver, gallstones, irritable		Rifai,2006
			bowel syndrome		Stickel, 2006
					Strahl, 1998
Comfrey	Symphytum	Pyrrolizidine	Internally for blunt	Veno-occlusive disease,	Bach, 1989
	officinale	alkaloids*	injuries (bruises, sprains,	tends to lack symptoms	Ridker, 1985
			and broken bones),	of jaundice or increased	Weston, 1987
	Symphytum		digestive tract problems	liver enzymes	Yeong, 1990
	asperum		(ulcers, diarrhea,		
		<i>Y</i>	inflammation),		
			rheumatism and		

			pleuritis. Externally as a		
			gargle for gum disease,		
			pharyngitis, and strep		
			throat.		
Comfrey Notes: T	he sale fo comfrey is	banned in Canada an	d Germany, but not the Unit	ed States (Stickle, 2005)	
Germander	Teucrium	Diterpenes	Weight loss, gout,	Hepatitis, liver	Ben Yahia, 1993
	chamaedrys L		digestive aid, fever. Most	transplant, and death.	Castot, 1992
			of those affected were	Total of 52+ cases.	Dao, 1993
	Teucrium		ingesting 600 - 1600	Includes the 26 hepatitis	Diaz,1992
	polium		mg/day for 2 months	cases in France where	Dourakis, 2002
			(Stickle, 2005).	germander was banned	Goksu, 2012
	Teucrium			in 1992 (Castot,1992).	Gori, 2011
	viscidum			Most recovered, but	Laliberte, 1996
				there were two cirrhosis	Larrey, 1992
				cases, 1 liver transplant	Legoux, 1992
				and 1 death (Gori,	Mattei, 1995
				2011).	Mattei, 1992
					Mazokopakis, 2004

					Mimidis, 2009
					Mostefa-Kara,1992
					Nencini, 2014
					Pauwels, 1992
					Perez, 2001
					Polymeros, 2002
					Poon, 2008
					Savvidou, 2007
					Sezer, 2012
					Starakis, 2006
Gota Kolu	Centella asiatica	Pentacyclic	Weight loss	4 cases of hepatitis with	Dantuluri 2011
		triterpenic		2 positive rechallenges	Jorge 2005
		saponosides	,		
Green Tea	Camellia sinensis	Catechins -	Weight loss	Hepatitis, 2 liver	Abu, 2005
Extract		epigallocatechin-3-		transplants. 34 reports -	Bonkovsky, 2006
		gallate (EGCG)		27 cases possible, 7	Garcia-Cortes,
		<i>y</i>		probable (Sarma, 2008).	2008 (3)
					Gloro, 2005 (LT)

Patel, 2013 Pedros, 2003 Pillukat, 2014 Sarma, 2008 (2
Pillukat, 2014
Sarma, 2008 (2
Green Tea Extract: See Hydroxycut and other dietary supplements containing green 19 cases (2 listed here)
tea extract. Exolise [®] , a weight loss supplement, was withdrawn from the market in were summarized by
France and Spain due to hepatotoxicity (Weinstein, 2012). Mazzaniti (2015) with 11
possible cases and 8
probable (CIOMS
/RUCAM). Four were
beverage based. All
recovered except 2 with
declining labs, and the 4
liver transplants were patients taking multiple
patients taking multiple
ingredients. Ten cases
were primarily green

tea/extract. 44 yr female with acute liver failure followed by transplant taking 720 mg/day for weight loss (Molinari, 2006) Two cases of green tea drinks: 1) 51 yr female drinking unknown cups/day for 5 years with elevated enzymes and positive rechallenge (Federico, 2007), 2) 45 yr male drinking 6 cups a day for 4 months with hepatitis and positive

				rechallenge (Jimenez-	
				Saenz, 2006)	
Groundsel	Senecio vulgaris	Pyrrolizidine	Traditional medicinal	Ascites, hepatitis, veno-	Fox, 1978
		alkaloids	teas in Mexico, Jamaica,	occlusive liver disease,	Oritz, 1995
	Senecio		Afghanistan, India.	infant death	Stillman,1977 (D)
	longilobus		Constipation, colic,		Vilar, 2000
			epilepsy, worms.		
			Not recommended for		
			internal use due to its		
			toxic and carcinogenic		
			pyrrolizidine alkaloids.		
Impila	Callilepis laureola	Atractylside	Traditional Zulu remedy	Hypoglycemia and	Steenkamp, 1999
			that means "good	prolonged prothrombin	Wainwright, 1977
			health." Ward off evil	times are universal	Watson, 1979
			spirits in children. About	symptoms. Leucocytosis	
		X	44% of deaths in	(80%), acidic breathing	
		<i>y</i>	children under 10 years	(73%), convulsions	
			(Wainwright,1977).	(52%), coma (40%),	

				diarrhea or vomiting	
				(40%), jaundice (13%),	
				elevated enzymes	
				(Watson, 1979). Acute	
			,	liver and renal failure.	
			3	Acute fatal	
			45	hepatocellular necrosis,	
				especially in children.	
				Death.	
Jin Bu Huan	Lycopodium	Levo-	Traditional Chinese	Acute hepatitis, life	Brent, 1999
(JBH)	serratum	tetrahydropalmatine;	Medicine used as a	threatening bradycardia,	Horowitz, 1996
		Pyrrolizidine	sedative sleeping aid,	respiratory distress, liver	Picciotto, 1998
		alkaloids	analgesic, and for	damage.	Woolf,1994
			indigestion.		
Kava	Piper	Kava lactones	Anxiety and insomnia.	Acute hepatitis	Brauer 2003
	methysticum	(kava pyrones)	Traditional use as a	necrotizing hepatitis,	Bujanda 2002
		Y	cultural beverage in	cholestatic hepatitis,	CDC, 2002
			Polynesia. A review of	lobular hepatitis,	Christi ,2009

			kava cases is provided	fulmitant hepatic failure,	Escher, 2001
			by Teschke, 2010b.	liver transplant, death.	Gow, 2003
					Humberston, 2003
				Consuming alcohol with	Kraft, 2001
				kava may be a triggering	Russmann, 2001
				factor.	Stickel, 2003
			45		Strahl, 1998
Pennyroyal	Mentha pulegium	Pulegone	Oil or tea leaves used in	Rapid onset. Elevated	Anderson, 1996 (3)
(American or			Hispanic cultures to treat	liver enzymes, liver	Bakerink, 1996 (D)
European)			colic, stimulate menses,	necrosis, coma, death	Sullivan, 1979 (D)
			& induce abortion.	(especially in infants &	
				young women)	
Rattlebox	Crotalaria	Pyrrolizidine	Chinese remedy for	Chronic diarrhea,	Guan, 2006
	sessiliflora	alkaloids	cancer. Seeds	cirrhosis, liver necrosis,	Lyford, 1976
			sometimes accidently	biliary hyperplasia,	Ng,2014
	Crotalaria		mixed with foods in	fibrosis, veno-occlusive	Tandon,1976
	longirostrata	<i>Y</i>	India, China, South	disease, hepatomegaly,	
			America, and other	death	

	Crotalaria		countries. Teas in		
	(species)		Mexico.		
Saw palmetto	Serenoa repens	Estrogenic and	Benign prostate	58 yr male with elevated	Lapi, 2010
		antiandrogenic	enlargement	enyzmes and enlarged	
		effects (Jibrin, 2006)		liver and history of	
				Gilbert's syndrome	
			,5	taking 900 mg of dried	
				extract + 660 mg of	
				berry powder.	
				Symptoms decreased	
			O)	when stopping	
				supplement.	
Senna	Cassia	Menthofuran	Laxative	Hepatitis, liver necrosis.	Beuers, 1991
	angustifolia	Anthraquinones		Positive re-exposure	Seybold, 2004
				(Beuers 1991)	Sonmez, 2005
					Vanderperren,
		Y			2005
Skullcap	Scutellaria	Cytotoxic flavonoids	Anxiety, insomnia	Hepatitis, liver failure	Estes, 2003 (LT)

	lateriflora			and death	Hullar,1999 (LT,D)
Thistle	Atractylis	Diterpenoid	Stomach aches and	Severe hepatitis,	Caravaca, 1985
(Blue, glue, pine	gummifera	glucosides	stomach ulcers.	necrosis, liver failure,	Catanzano, 1969
or			Common cause of	liver transplant, death	Georgiou, 1988 (D)
Mediterranean			accidental poisoning in	Y	Lemaigre, 1975
thistle)			Mediterranean children	7	Hamouda, 2004
			eating plants. Thistle		Hamouda, 2000
			looks like wild artichoke		
			and the root is like a		
			chewing gum		
Usnic acid	Usnea lichens	Usnic acid extracted	Traditional Chinese	Liver transplant.	Durazo, 2004 LT
	(fungi & algae)	from lichens	antimicrobial agent	FDA received 21 of liver	
			(Guo, 2008). Weight loss	toxicity from dietary	
			- popular ingredient in	supplements containing	
			fat burner formulations	usnic acid (Guo, 2008).	
			that increase	See dietary supplements	
			metabolism and	LipoKinetix and UCP-1.	
			thermogenesis.		

Valerian	Valeriana	Valeric acid	Anxiety, insomnia	Acute hepatitis,	Cohen, 2008	
	officinalis L.			hepatomegaly (no	Vassiliades, 2009	
				jaundice), liver		
				Fibrosis		
Add a DSILI case report not on the list or make comments/corrections						
New herb	New	New	New	New	New	

^{*}These case reports are compiled from published papers in the scientific literature. Commercial formulations may have changed.

Shaded herbs no longer sold on the internet

© 2016 Amy Brown

* Pyrrolizidine alkaloids exhibit a clear dose-dependent hepatotoxicity and are banned in Europe and North America (Stickel, 2015).

PA's can be classified into saturated and unsaturated, with the latter being well-known hepatotoxic and carcinogenic compounds. They generate toxic metabolites resulting in hepatic veno-occlusive disease and/or liver cancer (Fu, 2004; Lin, 2009). Pyrrolizidine alkaloids are likely the responsible liver toxicity agents for comfrey, goundsel, Hathisunda, and Jin Bu Huan. Children in South Africa and Jamaica have developed ascites, hepatomegaly and cirrhosis after drinking 'bush tea" (Stickle, 2005). Reviews of PA-containing plants are provided by Roeder, 2000 and Chojkier, 2003.

Table 4. Dietary Supplement Induced <u>Liver</u> Injury Cases Reported in PubMed and by FDA*

Common	Suspected	Uses	Dietary Supplement	References
Name	Substance*		Induced Liver Injury	
	(formulations			
	often changed)			
Bakuchi tablets	Psoralea	Vitiligo	64/F with severe	Teschke, 2009
	corylifolia leaves		hepatotoxicity via elevated	
	with psoralens		liver enzymes. CIOMS	
		Z)	probable score 8	
Anabolic steroids	Illegal class III			
	controlled			
	substances.			

Note: Anabolic steroids. These are not legal dietary supplements so case reports are not listed. The abuse of anabolic androgenic steroids led them to being classified as controlled substances by The Anabolic Steroid Control Act of 1990 (Krishman, 2009). It is illegal to possess, manufacture, distribute or dispense them unless it is for strict medical purposes

such as androgen deficiency, rare forms of aplastic anemia, and counteracting catabolic states such as trauma and HIV wasting (Kafrouni, 2007; Krishman, 2009). Liver injury includes peliosis hepatitis, benign or malignant neoplasms, cholestatis, and if prolonged, nephropathy (Krishman, 2009). Many anabolic steroids have been related to hepatotoxicity cases (Kafrouni, 2007; Krishnan, 2009; Shah, 2008).

The Anabolic Steroid Control Act of 1990 may be too specific in listing anabolic steroids because chemists can alter a known steroid to create a new one to circumvent controlled substance laws and avoid detection thorugh standard drug screens (Rahnema, 2014). These "designer steroids" have shifted from being sold on the black market to certain body-building dietary supplements. Sport officials become aware of the new steroids, the FDA rarely bans them, and manufacturers are rarely penalized (Shipley, 2005). If the FDA does ban them and or "related substances," a new designer steroid can be made. If the designer steroid is not on the label, the manufacturer is also violating labeling laws.

Conjugated	Conjugated	Weight loss	26 yr female with hepatitis	Bilal, 2015
linoleic acid	linoleic acid			
(CLA)			63 yr female with fulminant	Nortadas, 2012
		, O '	hepatic failure requiring	
			transplant;	
		<i>Y</i> , '		
			46 yr female with jaundice,	Ramos, 2009

			and confirmed liver biopsy	
Euforia	Acai berry,	Anti-inflammatory and	45 yr female with necrosis	Jimenez, 2012
	mangosteen,	antioxidant	and hepatitis; 8.8% of	
	Aloe vera,		systemic sclerosis have liver	-
	resveratrol,		damage, but she had a	
	curcumin, black		positive rechallenge taking 2	
	seed, blueberry,		ounces daily	
	pomegranate,			
	green tea, noni,			
	goji			
Exilis	Similar to	Weight loss	25 yr male with elevated	McDonnell, 2009
	Hydroxycut –	A	enzymes, nausea, vomiting,	
	Green tea	Other products may be	fatigue, fulminant hepatic	
	extract, Garcinia	on the market that	failure, & liver transplant.	
	cambogia,	mimic Hydroxycut's	Took Exiis for two weeks.	
	Gymnema	formulation that was		
	sylvestre, and	removed from the		
	others	market.		

Flavocoxid	Proprietary	Medical food requiring	4 patients with elevated liver	Chalasani, 2012 (4)
(Limbrel)	blend of 2	a prescription for	enzymes in DILIN study	
	flavonoids,	osteoarthritis		
	baicalin and			
	catechins			
	derived from			
	<u>Scutellaria</u>			
	<u>baicalensis</u>			
	(Skullcap			
	related to liver			
	injuries), and			
	Acacia catechu			
Glucosamine		Osteoarthritis	28/F with jaundice, hepatitis	Cerda, 2013
&/or			and itching after taking	
Glucosamine			glucosamine for 1 month.	
chondroitin			Elevated enzyme levels	
		<i>></i>	normalized after withdrawal.	

	56/F with elevated enzymes.	
	55 yr female with elevated	Ebrahim, 2012
	enzymes and jaundice after	
	2 weeks on glucosamine.	
	5	
	52 yr male with elevated	Ossendza, 2007
	enzymes and itching after 3	
	weeks of glucosamine.	
	O Y	
	64 yr male with jaundice,	Smith, 2009
Q	acute renal failure, fulminant	
	hepatic failure, and death	
	after taking glucosamine and	
	chondroitin sulfate for 4	
<i>></i>	weeks.	

57 yr female with jaundice	
and chronic hepatitis after	
taking glucosamine for 4	
weeks.	

Glucosamine Notes: Glucosamine can be sold as is or more commonly available in a variety of commercial preparations that combines it with chondroitin sulfate, MSM (methylsulfonylmethane), manganese ascorbate, or cartilage (shark or bovine). The glucosamine itself comes in a variety of types (eg, glucosamine sulfate, glucosamine hydrochloride, and *N*-acetylglucosamine) in tablet, capsule, powder or liquid form (Smith, 2009). One survey of 150 chronic liver disease patients showed that 15% (23/150) were taking glucosamine and/or chondroitin sulfate (Cerda, 2013).

Green Tea	Camellia	Weight loss	Hepatitis, 2 liver transplants.	Abu, 2005
Extract	sinensis		34 reports - 27 cases	Bonkovsky, 2006
		R	possible, 7 probable (Sarma,	Garcia-Cortes, 2008 (3)
	Catechins -		2008).	Gloro, 2005 (LT)
	epigallocatechin			Molinari, 2006 (LT)
	-3-gallate		19 cases (2 listed here) were	Patel, 2013
	(EGCG)		summarized by Mazzaniti	Pedros, 2003
Catechins are imp	licated in liver toxic	ity, but 40% (29/73) of	(2015) with 11 possible	Pillukat, 2014
dietary supplement products analyzed for catechins did not			cases and 8 probable	Sarma, 2008 (27)

identify green tea extract on the label which is a violation of (CIOMS/RUCAM). Four were current labeling laws (Navarro, 2013a). beverage based. All recovered except 2 with declining labs, and the 4 liver transplants were patients taking multiple ingredients. Ten cases were primarily green tea/extract. 44 yr female with acute liver failure followed by transplant taking 720 mg/day for weight loss (Molinari, 2006) Two cases of green tea drinks: 1) 51 yr female drinking unknown cups/day for 5 years with elevated

			enzymes and positive	
			rechallenge (Federico,	
			2007), 2) 45 yr male drinking	
			6 cups a day for 4 months	·
			with hepatitis and positive	
			rechallenge (Jimenez-Saenz,	
			2006)	
Herbalife®	Numerous	Well-being, weight	63 yr F with hepatitis	Chao, 2008
	products with	loss, nutritional support		
	variable			
	ingredients -		0	
	pills, powders,	A	· · ·	
	shakes, teas,		7	
	bars, etc.			
Herbalife® Notes: Over 34 Herbalife® cases from at least 5			37/F with jaundice	Chen, 2010
countries since 2007 have been reported (Stickel, 2011).		53/F with jaundice		
Another review ret	rieved 53 cases of	which 8 had a positive	3 cases of hepatotoxicity in	Duque, 2007
unintentional reexp	oosure (Teschke, 2	013b). Many ingredients	Spain.	

are in each Herbalife® product, and customers tend to take	12 patients identified in	Elinav, 2007
more than one product. Appelhans (2011) states numerous	Israeli hospitals by Ministry	
reasons why Chen's (2010) 3 case reports are not	of Health. Hepatitis resolved	
scientifically supported, including that Herbalife® is not a	in 11 patients, one	\
single product, and that there was insufficient information on	succumbed to complications	
patient histories, dosage/frequency, concomitant	following liver transplant.	
medications, and product ingredients. Five plus other articles	Three experienced 2 nd bout	
defending Herbalife can be found in PubMed under	of hepatitis after rechallenge.	
Appelhan's authorship.	56 yr F with hepatitis and	Garrido-Gallego, 2015
	necrosis. Noni also	
	consumed (see below)	
	Five cases in Iceland:	Johansson, 2010
	elevated liver enzymes and 2	
	with hepatitis. RUCAM =	
	probable in 3, possible in 2.	
	WHO criteria = certain in 1,	
Y	probable in 2, possible in 2	
	A search of Spanish	Manso, 2011

Pharmacovigilance Centres	
(2003-2010) revealed 20	
cases, 12 required	
hospitalization, 9 were	>
jaundiced, 2 experienced	
positive rechallenge. Karch	
and Lasagna scale = 1	
definite, 14 probable, 5	
possible.	
Two cases of probable	Menqual-Moreno, 2015 (2)
cause and a fatality.	
Ten cases of hepatitis	Schoepfer, 2007
detected by a questionnaire	
sent to all Swiss hospitals	
(1998-2004). Liver biopsy	
showed hepatic necrosis,	
marked lymphocytic -	
eosinophilic infiltration, and	

			cholestasis in 5 patients; 1	
			with fulminant liver failure	
			and transplant. CIOMS =	
			certain in 2, probable in 7,	\
			possible in 1.	
			Two patients with hepatitis	Stickel, 2009
			and cirrhosis respectively	
			after ingesting bacterially	
			(Bacillus subtilis)	
			contaminated products.	
			CIOMS = probable.	
Hydroxycut®	Numerous	Weight loss and body	41/M with jaundice taking	Araujo, 2015
	formulations	building	Newer version Hydroxycut®,	
	with different		SX-7 Clean Sensory	
	ingredients:	(See Elixis above)		
	Green tea			
	extract;			
	Garcinia			

(ambogia
	nydroxycitric
6	cid);
	la huang
6	xtract
	ephedra) (Bajaj
	003)
	Cissus
	uadrangularis
	oxic to
6	nimals)
	Barakat, 1985);
	000 formula =
ŀ	ydroxagen?,
9	uarana extract,
l	-carnitine, ma
ŀ	uang extract,

	willow bark		
	extract,		
	chromium		
	picolinate		
	(Kockler, 2001)		
Hydroxycut® Note:	s: Hydroxycut® was withdrawn by its	31/F with jaundice resolved	Chen, 2010
manufacturer after	a May 1, 2009 warning issued by FDA for	within 2 weeks	
its possible role in	23 cases of hepatotoxicity reported via	40/F on 6 pills daily with	Dara, 2008
MedWatch (Sarma	a, 2010). Lobb (2009) published a review	elevated liver enzymes.	
on hepatotoxicity of	ases related to Hydroxycut®.	33/F with jaundice	
		8 patients at different	Fong, 2010
Hydroxycut® was i	named after one of its ingredients,	medical centers; 3 required	
hydroxycitric acid,	an extract from Garcinia cambogia (Stohs,	liver transplants; 1 death.	
2009). In 2009, fou	urteen different Hydroxycut® formulations	/M Army soldier with	Jones, 2007
containing up to 20	different ingredients existed. Eight of the	jaundice	
14 formulas contained hydroxycitric acid. Semwal (2015)		23, 25, 25 yr males in the	Laczek, 2008
provides a compre	hensive review of Garcinia cambogia,	military on Hydroxycut with	
while Stohs (2009)	and Soni (2004) summarize studies	liver biopsies revealing acute	

supporting Hydroxycut's® and hydroxycitric acid's safety		hepatitis, steatosis, and		
respectively. Stoh (2013) also supported the safety of Cissus		cholestatis respectively.		
quadrangularis.			23/M with jaundice on	Rashid, 2010
			Hydroxycut Hardcore	
			28/M with jaundice	Shim, 2009
			27/M with jaundice	Stevens, 2005
			30/M with jaundice,	
			cholestatis	
Inneov masa	Green tea	Stop hair loss	59/F on pills for 1 month with	Fernandez, 2014
capilar®	extract (27-		necrosis, jaundice (probable	
	30%), grape		on CIOMS/RUCAM)	
	seed catechins,	A	31/F taking pills for 1 month	
	taurine, & zinc		with elevated enzymes	
	gluconate.		(highly probable)	
Kalms Tablets	Skull cap,	Sedative		MacGregor, 1989 (2)
(not Calms;	valerian	*		
different product)	(formula may	Y		
	have changed)			

LipoKinetix®	Contained	Weight loss	7 cases of severe	Favreau, 2002 (7)
	norephedrine,		hepatotoxicity (20-32 yrs of	
	yohimbine, 3,5-		age; 5 were Japanese)	
	diiodothyronine,		taking LipoKinetix® (4 on	
	sodium usniate		other products listed) for 10-	
	(See <u>usnic</u>		32 days with jaundice.	
	acid), and			
	caffeine.			
FDA removed it fro	om market in 2001.	FDA has received	32 yr female with necrosis.	Neff, 2004
multiple reports of	persons who devel	oped liver injury or liver	32 yr female with liver	
failure while using	Lipokinetix (FDA, 2	2013-c).	transplant.	
		A	24 yr female taking	Scott, 2003
			LipoKinetix® for 3 months	
			with jaundice followed by	
			liver transplant	
Lipolyz®	Fat burner	Fat burner Somalyz®	28 yr female bodybuilder	Krishna, 2011
and	Lipolyz®	contained:	with unresponsive	
Somalyz®	contained:	<u>GABA (</u> 667 mg),	encephalopathy requiring	

	Propionyl I-	Propionyl I-carnitine	liver transplant after taking	
	carnitine (500	(167 mg),	two fat burners for 1 month.	
	mg), green tea	phosphatidylcholine	The underlined substances	
	extract (300	(50 mg); <u>usnic acid</u> (4	could have contributed.	-
	mg), <u>usnic acid</u>	mg), melatonin (1 mg),	Although no cases appear	
	(12 mg),	vitamin E (20 IU)	with GABA, it is possible	
	guggulsterone		because Progabide, a GABA	
	(10 mg)vitamin		drug mimetic, resulted in	
	E (20 IU), C-		severe hepatic failure after 4	
	Amp (2 mg)		weeks (Munoz, 1988).	
Move Free	Skullcap	Osteoarthritis	2 patients with hepatotoxicity	Linnebur, 2010
Advanced	Glucosamine	A	that resolved upon ceasing	Yang, 2012
			supplement. Probable 6 on	
			Naranjo scale.	
		, O'		
			78 yr female with hepatitis.	
		X	Positive re-exposure (Yang,	
			2012)	

Niacin	Niacin,	Prescribed for high	69 yr male switched from	Bassan, 2012
(3 gm, slow	a B-vitamin	blood cholesterol.	fast to slow (timed) release	
release)			niacin and experienced	
		Energy drinks do get	hepatitis	\
		that "buzz" (tingling		
		from niacin).		
Niacin Notes:	1		17 yr male with acute liver	Ellsworth, 2014
			failure after taking excess	
			niacin to deter drug test.	
			3 cases of niacin induced	Mounajjed, 2014
			hepatitis	
		A	FDA review of niacin related	Rader, 1992
			to liver toxicity – adverse	
			reactions in 6 on regular	
			niacin, 2 on slow release,	
			and 10 who switched from	
		<i>Y</i>	regular to slow (timed)	
			release niacin.	

			22 yr female with acute	Vivekanandarajah, 2011
			hepatitis after consuming 10	
			cans of energy drink daily	
			(contained niacin)	\
OxyElite Pro®	Version 1	Weight loss,	7 military patients – 5 with	Foley, 2014
	DMAA	bodybuilding	jaundice and 1 having a liver	
	(1,3-		transplant	
	dimethylamyl-			
	amine) (See			
	Cardiotoxicity)			
	Version 2	Weight loss,	Hawaii Department of Health	Johnston, 2016
	Aegeline	bodybuilding	reporting on 29 patients in	
			Hawaii using OxyElite Pro	
			with 12 using only OxyElite	
			Pro. Jaundice.	
	Version 2	Weight loss,	Physician review of 8	Roytman, 2014
	Aegeline	bodybuilding	patients (all Polynesian or	
			Asian from Hawaii that has	

			one liver center in the state)	
			hospitalized – 7 with	
			jaundice, 2 with liver	
			transplants, and 1 death.	
			RUCAM/CIOMS scale - 7	
			probable, 1 highly probable.	
Pro-Lean	One capsule (to	Weight loss	20 yr female taking product	Joshi, 2007
	be taken once		for two weeks with jaundice,	
	per day)		& hepatitis.	
	contains ma-			
	huang, guarana,		0	
	kola nut, white	A)	
	willow bark,			
	ginkgo biloba,			
	bladderwrack,			
	gotu kola,			
	boron, ginseng,	<i>y</i>		
	fo-ti,			

	magnesium			
	salicylate, folic			
	acid, bee pollen,			
	spirulina and			-
	ginger root,			
	chromium			
	vitamin B12,		45	
	vanadium,			
	caffeine,			
	cyperus root			
	extract, tyrosine.	,		
Sennomotokoun	11 herbs:	Chinese DS for weight	63 yr female with jaundice	Kawata, 2003
ou	kudzuvine root,	loss. Removed from	24 yr female with jaundice	
	coix seed,	market in Japan due to	53 yr female with elevated	
	hawthorn fruit,	adverse hepatotoxic	enzymes and dark urine	
	wolfbeery fruit,	reactions.		
	chrysanthemmu		120 reports of hepatotoxicity	
	m flower, louts		on the Japan Ministry of	

	leaves, tangle		Health, Labour & Welfare	
	kelp, radish		website (2000-2002).	
	seeds, cassia			
	seeds, jiogulan		Hyperthyroidism should be	
	leaf, tea leaf		considered as it also	
	extracts?		contains thyroid hormones,	
			T3. 32 reports of thyroid	
			dysfunction.	
UCP-1	Usnic acid,	Weight loss	28 yr female on UCP-1 for 3	Sanchez, 2006
	L-carnitine,		months. Jaundice, hepatic	
	calcium		encephalopathy, liver	
	pyruvate	A	transplant.	
			38 yr male (husband of	
			above female) taking UCP-1	
			for 3 months, but also on	
		Y	desloratidine, famotidine,	
			and naproxen,	

			acetaminophen/oxycodone,	
			cyclobenzaprine, and 120 g	
			alcohol. Jaundice.	
Venencapsan [®]	Horse chestnut	Varicoseveins,	69 yr female with jaundice	De Smet, 1996
	leaf, milfoil,	hemorrhoids,	and elevelated enzymes,	
	<u>celandine</u> ,	and phlebitis	returned to normal, but	
	sweet clover,		jaundice returned with	
	milk thistle,		rechallenge.	
	dandelion root.			
Venoplant	Aesculus	Venous insufficiency	27 yr male with jaundice,	Takegoshi, 1986
	hippocastanum		necrosis, cholestatis	
	(horse chestnut)			
	extracts			
Vitamin A	Recommended		3 Chinese men consuming	Chiu, 1999
	daily value is		fish livers. Headache,	
	5,000 IU/day.		dizziness, nausea, vomiting	
		<i>y</i>	fever, skin peeling.	
	25,000 for 6			

	years and			
	100,000 for 6			
	months are			
	toxic. Children		6	\
	toxicity at 1500			
	IU/kg body			
	weight		45	
	(Penniston			
	2006)			
Vitamin A Notes: It	has been known f	or more than half a	3 Chinese pediatric cases in	Hayman, 2012
century that extren	century that extreme vitamin A dosages can cause severe		New Zealand of a 2 yr	
headaches, mailas	se, weakness, irrital	bility, and liver injuries.	female, 11 and 14 year old	
The Artic explorers	s and Eskimoes kne	ew not to consume polar	boys. Consumed fish livers.	
bear liver that averages 450,000 IU per 3 ounces. The liver of			Headache, vomiting,	
certain seals, artic foxes, wolves and many fish is also high		abdominal pain, red, peeling		
(O'Donnell, 2004)		rash.		
		<i>></i>	New Zealand Chinese	Lonie, 1950
			fisherman ingesting fish	

livers. Headache, vomiting,	
peeling skin.	
male	Castano, 2006
60 yr male liver transplant after taking 500,000 IU daily for 4 months, then 100,000	Cheruvattath, 2006
IU for 6 months.	
Fibrosis, splenomegaly and ascites	Forouhar, 1984
Yr male with hepatotoxicity on 25,000 IU/day	Kowalski, 1994
41 patients with vitamin A hepatoxocity due to 25,000	Geubel, 1991
to 100,000 daily; 6 died 52 yr female with hepatic	Miksad, 2002
hydrothorax. Ingested	
270,000 IU daily. 3 family members with	Minuk, 1988

		hepatotoxicity from 20,000 to	
		45,000 per day for 7-10	
		years.	
		4 yr female with cystic fibrosis and hypervitaminosis	Safi, 2014
		48 yr male with skin discoloration + elevated liver enzymes	Sansone, 2012
		59 yr male with cirrhosis ingesting 13,000 ug/day	Sheth, 2008
		69 yr female with hepatomegaly	Theiler, 1993
Usnic Acid	Usnea lichens	Fulminant hepatic failure	Sanchez, 2006
	(fungi & algae)	requiring liver transplant	
	Usnic acid extracted from	Hepatic necrosis	

	lichens						
Add a DSILI case report not on the list or make comments/corrections							
New DS	New	New	New	New			

© 2016 Amy Brown

Shaded dietary supplements no longer sold on the internet

^{*}These case reports are compiled from published papers in the scientific literature. Commercial formulations may have changed.

Table 5. Insufficient Evidence for DS Induced Liver Injury Case Reports

Common	Scientific	Suggested	Uses	Liver Injury	References
Name	Name	Active			
		Compounds			
Artemisinin	Isolated from	Amodiaquine or	Artemisinins (artesunate,	Severe hepatitis under	CDC, 2009
	Artemisia	other possible	artemether, and	prolonged amodiaquine	Guevart,
	annua	drugs combined	artemisinin), have potent	treatment has been reported	2009
		with this herb. A	anti-malarial activity, and	since 1985 (Guevart, 2009). A	
		partner drug with	are the first line of	partner drug with a longer	
		a longer half-life	treatment recommended	half-life is used to make the	
		is used to make	by WHO against malaria	derivatives more effective.	
		the derivatives	(CDC 2009). Also used		
		more effective.	against flatworms (flukes).		
Bee pollen	Apis mellifera	Unknown	Immune system	33/F with elevated liver	Shad, 1999
	L.			enzymes on two tablespoons	

				of pure bee pollen for several	
				months. Taking erythromycin	
				for acne.	
				69 M with jaundice taking 14	
				tablets mixed herbs for 6	
			Ċ	weeks (21 herbs, including	
				black cohosh, chaparral,	
				comfrey).	
Boh-Gol-Zhee	Psoralea	Unknown	Asian remedy for	44/F took 10 times the usual	Nam, 2005
Bu Ku Zi	corylifolia		osteoporosis,	dose for 7 weeks and	
Pa-Go-Zhee	dried mature		osteomalacia, and bone	experienced liver necrosis	
	seeds		fractures	and cholestasis	
Cascara	Cascara	Anthracene	Laxative	77/F Japanese with jaundice	Nakasone,
	sagrada	glycoside	Y	taking 3-4 capsules (250 mg	2015
				Cascara sagrada bark + 12	
		X, '		other herbs) for 3 days, but	
				also on verapamil, losartan-	

				hydrochlorothaizide,	
				lovastatin, and metformin.	
Chaso	Chinese	Contained N-	Weight loss	Six F aged 25-55 (Japanese)	Adachi, 2003
	herbal	nitroso-		with elevated enzymes, 1 liver	
	supplement	fenfluramine, a		transplant	
	containing	known liver toxin			
	green tea,	(carcinogenic).	, È		
	cassia toreae				
	semen, lotus				
	leaves,				
	Gynostemma				
	pentaphyllum				
	makino				
	extract, aloe,				
	F. crataegi		<i>y</i>		
	fructus, and				
	raphanin	<i>y</i>			
	semen.				
					ĺ

Enzyte	Gingko	Unknown	Male enhancement	40/M with untreated hepatitis	Ramanathan,
	biloba,			C secondary to intravenous	2011
	Epimedium			drug use diagnosed with	
	sagittum,			hepatitis.	
	Korean				
	gingseng,				
	Avenasativa		Ċ		
	extract,				
	maca root,				
	saw palmetto				
	berry,				
	Ptychopetalu				
	m olacoides				
	(muira				
	puama		,		
	extract),				
	octaconasol,	<i>Y</i>			
	L-arginine,				

	Tribulus				
	terrestris				
	extract, pine				
	bark, &				
	Swedish				
	flower pollen.				
	Minerals		ي د		
	such as				
	niacin, zinc				
	oxide, and				
	copper				
Ephedra	Ephedra	Ephedrine and	Weight loss and energy.	58/F on single herb, but	Borum, 2001
or	sinica	pseudoephedrin	Has thermogenic effects.	omeprazole drug related to	
Ma Huang		е	Originally a nasal	hepatitis	
(Chinese name)			decongestant and		
			bronchial asthma		
		<i>y</i>	treatment, but discontinued		
			(Nadir, 1996). Known for		

cardiac side-effects (see		
Cardiotoxicity article)		
Ephedra Note: An ephedra link to liver injury has been suggested, but it has a	3 incidences in retrospective	Estes, 2003
stronger association with cardiotoxicity (see table).	study of liver transplant cases 1/2001 to 10/2002, but no actual case reports: 23/F was	(3)
	also taking kava and died; 51/M had chronic HBV and	
	needed a liver transplant;	
	21/M was also on disulfiram	
	had a liver transplant and	
	died.	
	33/F taking Chinese herbal	Nadir, 1996
	mixture containing Ma Huang	
	with hepatitis. Researchers	
	speculated that it might be	
	another ingredient as this was	
	the first reported case.	

			12 patients with liver injuries	Neff, 2004
			taking dietary supplements	(12 LT)
			containing other ingredients,	
			of which two contained usnic	
			acid	
			Chinese herb mixture of 7	Skoulidis,
		Č	total herbs	2005
			9 different supplements – not	
			all 30+ ingredients listed	
Glucosamine		Osteoarthritis	71/F with underlying chronic	Cerda, 2013
&/or			hepatitis had elevated	
glucosamine			enzymes after taking	
chondroitin			glucosamine for 1year.	
			Elevated enzyme levels	
			normalized after withdrawal.	
	X		77/F with underlying chronic	Cerda, 2013
			hepatitis with allergic skin	

		reaction. Conditions may have compromised their liver's ability to metabolize	
		drugs and DS.	
		55/F (Japanese) with highly	Fujii, 2008
	Ċ	probable (CIOMS) for	
		elevated enzymes and	
		hepatitis. Refused to share	
		supplements and only family	
		revealed soybean extract,	
		glucosamine, lutein (there	
		may be others). The	
		hyperferritinemia may have	
, C	Y	contributed to the liver injury.	
X ,		55/F with elevated enzymes	Smith, 2009
		after taking mixture of	

				glucosamine, black cohosh,	
				Kalms, cod liver oil, evening	
				primrose oil for 6 months	
Hydroxycut®	See Table 2	Green tea	Weight loss and body	44/M with pre-existing	Bajaj, 2003
		extract;	building	hepatitis A.	
		Garcinia		3	
		cambogia	Ċ		
		(hydroxycitric			
		acid);			
		Ma huang			
		extract (ephedra)			
		(Bajaj, 2003)			
		Cissus			
		quadrangularis	<u> </u>		
		(toxic to animals)	7		
		(Barakat, 1985)			
See Hydroxycut®	above			23/M with liver failure due to	Haimowitz,
				hereditary coprophorphyria	2015

				(HCP)	
				27/M with jaundice, but also	Kaswala,
				gallstones and elevated	2014
				enzymes and taking other	
				supplements: supplements	
				(Hydroxycut, Black powder,	
			Ċ	mitotropin, xenadrine, arson,	
				and L-glutamine powder 23)	
				19/M with elevated liver	Sharma,
				enzymes, but liver biopsy	2010
				revealed acute cholangitis	
				(infection of bile duct treated	
			R	with antibiotics)	
Lipolyz®	Fat burner	Fat burner	Weight loss	28/F bodybuilder with	Krishna, 2011
and	Lipolyz®	Somalyz®		unresponsive encephalopathy	
Somalyz®	contained:	contained:		requiring liver transplant after	
	Propionyl I-	<u>GABA</u> (667 mg),		taking two fat burners for 1	
	carnitine (500	Propionyl I-		month. Several of the	

	mg), green	carnitine (167		underlined substances could	
	tea extract	mg),		have contributed. Although no	
	(300 mg),	phosphatidylcholi		cases appear with GABA, it is	
	usnic acid	ne (50 mg);		possible because Progabide,	
	(12 mg),	usnic acid (4		a GABA drug mimetic,	
	guggulsteron	mg), melatonin		resulted in severe hepatic	
	<u>e</u> (10	(1 mg), vitamin E	Ċ	failure after 4 weeks (Munoz,	
	mg)vitamin E	(20 IU)		1988).	
	(20 IU), C-				
	Amp (2 mg)				
Mistletoe	Viscus			49 yr female with hepatitis	Harvey, 1981
	album, but			that returned 2 years later	
	herbal			with rechallenge, but mixed	
	remedy			herbal remedy contained	
	contained		<i>y</i>	skullcap, a known liver toxin.	
	kelp,				
	motherwort,	Y			
	skullcap, and				

	mistletoe				
Move Free	Product		Arthritis	2 patients with hepatotoxicity	Linnebur,
Advanced	contains			(Probable on Naranjo scale)	2010
	glucosamine,				
	chondroitin,				
	hyaluronic			->-	
	acid, and		Ċ		
	Uniflex				
	proprietary				
	extract				
	(combination				
	of <u>Chinese</u>				
	skullcap and				
	black				
	catechu).		7		
Multiple dietary			Well being, etc	45 yr male with jaundice	Cheng, 2010
supplements		>		taking 9 different dietary	
				supplements for 1-4 months	

Niacin			High blood cholesterol	16 yr male with pre-existing	Apestegui,
				liver transplant (twice) had	2011
				hepatitis following energy	
				drink (3 cans within 4 hours).	
				Niacin levels unknown, but	
				current 2015 levels at	
			Ċ	recommended daily value.	
				56 yr male with emphysema	Fisher, 1991
				admitted to hospital for	
				difficulty breathing following a	
				respiratory tract infection and	
				possibly pneumonia. Taking	
				only 1 gram of niacin. Liver	
				enzymes abnormal on 7 th day	
		×C	in hospital, followed by liver		
				failure and death on day 10.	
Noni	Morinda	One ounce of	Stomach cancer, improved	45 yr male with elevated liver	Millonig, 2005
	citrifolia	pure noni juice	immunity	enzymes drinking unknown	

	daily (for several		amount of noni juice for 3	
	months)		weeks. Tested positive for	
			hepatitis A.	
			38 yr F on 2 ounces daily of	Mrzljak, 2013
			noni juice (% not stated,	
			started in January). Also on	
		Ċ	phenobarbital (LiverTox.gov),	
			and possibly on previous pain	
			medication (not noted)	
			following January surgery.	
Noni Notes: West et al.,	(employed in the Research a	and Development	43 yr male with gliobastoma,	Stadlbauer,
Department of Tahitian I	Noni Juice, Prove, UT) questi	oned the causality of each	on chemotherapy and	2008
noni juice case because	of pre-existing medical condi	itions or DILI related drugs	levetiracetam (LiverTox.gov),	
(West 2006, 2007). He reported that four of the five case reports appeared in			started drinking 40 ml of noni	
Europe around the time that noni fruit juice was approved as a Novel Food by the			juice for 3 weeks.	
European-Commission in 2003 (European, 2003), based on a 2002 report by the			29 yr male with previous	Stadlbauer,
Scientific Committee on	Food (European, 2002). Four	hepatitis following	2005	
cases (67%) involved th	e same author, Stadlbauer, w	who reported these cases in	paracetamol. Asthma treated	

Germany or Austria (Stadlbauer, 2005; Yuce, 2005), and the 2008 case is of	with inhalitave beta2-agonists	
questionable causality due to the presence of levetiracetam, a drug listed on	and glucocorticoids. Also	
LiverTox.gov as associated with liver injury (Stadlbauer, 2008). No PubMed cases	taking Chinese herbal mix	
have occurred in Hawaii, Polynesia or Asia where noni is traditionally consumed.	containing bupleuri, pinellia,	
While some commercial noni juiced products contain 100% noni juice, the	scutellaria (LiverTox.gov),	
majority of these products do not, and some may contain less than 10% juice that	codonopsis, glycyrrhizae,	
includes other juices.	schizonepeta, and paeonia.	
	Acute liver failure followed by	
	liver transplant;	
	62yr female with acute	
	hepatitis. Had chronic B-cell	
	leukemia treated with	
	fludarabine (LiverTox.gov).	
	14 yr boy with acute	Yu, 2011
	hepatotoxicity after ingesting	
	ten 2 ounce bottles of Mind	
Y	(Ultra International). Analysis	
	revealed less than 1% noni	

				fruit juice and no	
				anthraquinones. Aloe vera	
				(LiverTox.gov) was one of the	
				ingredients.	
				24 yr female with hepatitis.	Yuce, 2006
				She had multiple sclerosis	
			Ċ	and was taking beta-	
				interferon (LiverTox.gov) for 6	
				weeks and noni juice for 4	
				weeks.	
Onshido	Rhodiola	Contained N-	Weight loss	Six F aged 27-63 with	Adachi, 2003
	(Rhodiola	nitroso-		elevated enzymes and 1	
	rosea), chaste	fenfluramine, a		death.	
	tree (Vitex	known liver toxin			
	agnus castus),		Y		
	Juniper	(carcinogenic).			
	(Juniperus				
	communis), soy	<i>y</i>			
	(Glycine max),				

A	Asian ginseng			
(1	Panax			
g	ginseng),			
Ja	apanese		<u> </u>	
kı	notweed			
(/	Polygonum			
C	cuspidatum)			
e	extracts, brown	, Ċ		
Se	seaweed			
(/	Fucus			
V	vesiculosus),			
d	landelion	4		
(7	Taraxacum			
0	officinale),			
ye	erba mate	Q		
(1	llex Paraguar-	S)*		
ie	ensis), uva-ursi	7		
(4	Arctostaphylos			
u	ıva ursi),			
pl	hytosterols			
(0	Glycine max),			

	I-theanine,				
	caffeine,				
	vitamins D, K,				
	B6 and B12,			<u> </u>	
	folate, and				
	calcium.				
Red Yeast Rice	Monascus	Lovastatin,	Lowering high blood	62 yr female with necrosis,	Roselle, 2008
	purpureus is	HMG-CoA (3-	cholesterol	fibrosis and hepatitis after	
	the red mold	hydroxy-3-		taking 1200 mg daily of red	
	that grows on	mehylglutaryl-		yeast rice for 4 months. Also	
	rice (making	coenzyme A		on two drugs that have rare	
	it red)			instances of liver injuries –	
				montelukast and fluoxetine.	
Red Yeast Rice N	lotes: It's entirely	possible that the re	ed yeast rice contributed to the	e liver injuries because this produ	uct the original
source of Lovasta	itin.				
Saw Palmetto	Prostata is a	Estrogenic and	Benign prostate	65 yr male with jaundice and	Hamid, 1997
	combination	antiandrogenic	enlargement	itching after taking Prostata	
	of zinc	effects (Jibrin,		for two weeks. Multiple	
	picolinate,	2006)		ingredients.	

pyridoxine,				
Lalanine,				
glutamic acid,				
apis mellifica				
pollen, silica,				
hydrangea				
extract,		()		
panex				
ginseng,				
serenoa				
serrulata, and				
pygeum				
africanum.				
Serenoa	Excessive daily		58 yr male with elevated	Lapi, 2010
repens	dose of 900 mg.	7	enyzmes and enlarged liver	
	Standard dose is		and history of Gilbert's	
	320 mg/day.		syndrome taking high	
			amounts of saw palmetto	

				(900 mg of dried extract) + of	
				berry powder (660 mg).	
				Symptoms decreased with	
				ceasing the supplement.	
	Supplement	Unknown		55 yr male recovered	Jibrin, 2006
	name or			alcoholic (15 yrs) with	
	ingredients		Ċ	cholestatic hepatitis and	
	not provided			acute pancreatitis. Liver may	
				have already been	
				compromised or influenced by	
				pancreatitis.	
SlimQuick [™]	24 yr female	Weinstein, 2012	Weight loss	52 yr female with jaundice,	Whitsett,
	with x taking			fulminant hepatic failure, and	2014
	four caplets			liver failure after drinking	
	daily for 3			SlimQuick [™] for two days	
	months.			while fasting. She was also	
	Taking	<i>></i>		taking metoprolol, a rare	
	tetracycline			inducer of liver injury.	

	known to			Possible DS-drug interaction.	
	induce liver				
	injury even				
	though				
	excluded due				
	to				
	histopatholog		١		
	y.				
Vitamin A	Retinol	5082 IU/day	Vision, healthy skin and	46/M patient consumed	Ramanathan,
	Retinal	consumed	mucous membranes,	Formula 1 Herbalife shake	2010
	Carotenoids		reproduction, growth, and	and two multivitamin tablets	
		5000 IU/day	protection as an	for 12 years. Jaundice	
		recommended	antioxidant.	recovery attributed to	
				previous bile duct stricture	
			7	and ceasing supplements, but	
				a bile duct stent was inserted	
Add a DSILI cas	e report not on th	e list or make comm	nents/corrections		
New DS	New	New	New	New	New

© 2016 Amy Brown

*These case reports are compiled from published papers in the scientific literature. Commercial formulations may have changed.

Table 6. Comparing yearly liver transplants and deaths due to drugs and DS

Author	Liver transplant	Death		Liver Transplant	Death
	Drugs	Drugs		DS	DS
Andrade 2005	0.5	1		1,5	0
Chalisani 2008	4	7	vs	0.3	0
Fontana 2014	3.1	1.3		1,1	0.14
Average	2.4	3.1		0.8	0.05

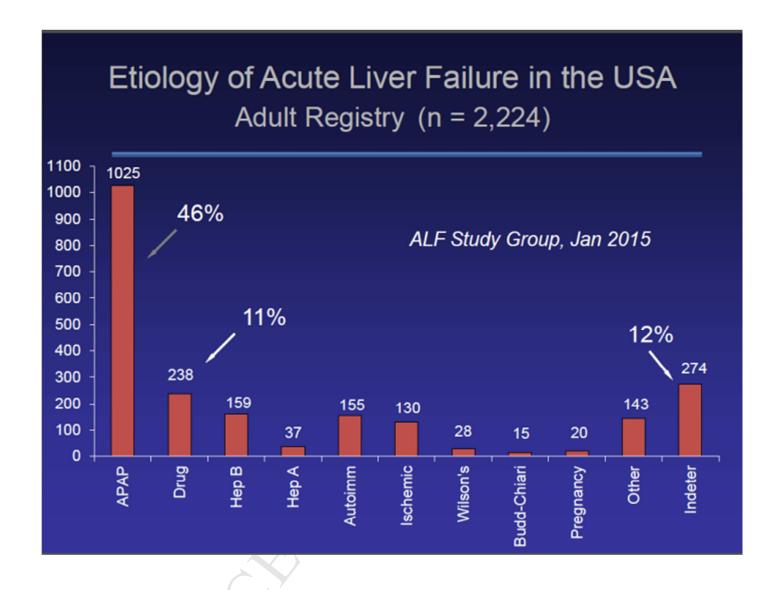


Figure 1. Etiology of acute liver failure in USA (2015) (FDA-a, 2015)

Highlights for Review

The manuscript was edited by a professional developmental editor for flow and grammar. The track changes of this edit are added, however, I made more positive changes that are not tracked, but you can see the difference.

Content was updated to include references up to June, 2016

Bullet points were added at the end of the manuscript